Simulink® 7

Developing S-Functions

1LAB
IMULINK"

4\ MathWorks'

Accelerating the pace of engineering and science

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Developing S-Functions
© COPYRIGHT 1998-2010 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

October 1998
November 2000
July 2002

April 2003
April 2004
June 2004
October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010

First printing
Second printing
Third printing
Online only
Online only
Online only
Online only
Online only
Online Only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 3.0 (Release R11)
Revised for Version 4.0 (Release R12)
Revised for Version 5.0 Release R13)
Revised for Version 5.1 (Release R13SP1)
Revised for Version 5.1.1 (Release R13SP1+)
Revised for Version 6.0 (Release R14)
Revised for Version 6.1 (Release R14SP1)
Revised for Version 6.2 (Release R14SP2)
Revised for Version 6.3 (Release R14SP3)
Revised for Version 6.4 (Release 2006a)
Revised for Version 6.5 (Release 2006b)
Revised for Version 6.6 (Release 2007a)
Revised for Version 7.0 (Release 2007b)
Revised for Version 7.1 (Release 2008a)
Revised for Version 7.2 (Release 2008b)
Revised for Version 7.3 (Release 2009a)
Revised for Version 7.4 (Release 2009b)
Revised for Version 7.5 (Release 2010a)
Revised for Version 7.6 (Release 2010b)

Overview of S-Functions

1

What Is an S-Function? 1-2
Using S-Functionsin Models 1-3
OVeIVIEW &ttt ittt e e e e 1-3
Passing Parameters to S-Functions 1-5
When to Use an S-Function 1-6
How S-FunctionsWork 1-7
Introduction e i 1-7
Mathematics of Simulink Blocks 1-7
Simulation Stagescciiiiiiiiiiii... 1-8
S-Function Callback Methods 1-9
Implementing S-Functions 1-11
MATLAB S-Functionsc.0iiiiiiunnennnn. 1-11
MEX S-Functionsc.uiiiiiiiiiinnnennnn. 1-12
S-Function Conceptsccoiuiiiiiiinnnn. 1-13
Direct Feedthrough 1-13
Dynamically Sized Arraysccciiiiiina.. 1-14
Setting Sample Times and Offsets 1-15
S-Function Examples 1-20
Overview of Examples, 1-20
Level-2 MATLAB S-Function Examples 1-22
Level-1 MATLAB S-Function Examples 1-22
C S-Function Examples 1-25
Fortran S-Function Examples 1-29

C++ S-Function Examples 1-30

vi

Contents

Selecting an S-Function Implementation

2

Available S-Function Implementations

What Type of S-Function Should You Use?

How to Implement S-Functions

S-Function Features

S-Function Limitations,

Example Using S-Functions to Incorporate Legacy C
Code ...
OVeIVIBW o ittt ettt et e e e
Using a Hand-Written S-Function to Incorporate Legacy

Code o e e e
Using the S-Function Builder to Incorporate Legacy

Code o e e e
Using the Legacy Code Tool to Incorporate Legacy Code . .

2-2

Writing S-Functions in MATLAB

3

Introduction

Writing Level-2 MATLAB S-Functions
About Level-2 MATLAB S-Functions
About Run-Time Objectsccoiiiiiienne...
Level-2 MALTAB S-Function Template
Level-2 MATLAB S-Function Callback Methods
Using the setup Method
Example of Writing a Level-2 MATLAB S-Function
Instantiating a Level-2 MATLAB S-Function
Operations for Variable-Size Signals
Generating Code from a Level-2 MATLAB S-Function

MATLAB S-Function Demos 3-14

Maintaining Level-1 MATLAB S-Functions 3-15
About the Maintenance of Level-1 MATLAB
S-Functionsiiiiiiiiii i i 3-15
Level-1 MATLAB S-Function Arguments 3-16
Level-1 MATLAB S-Function Outputs 3-17
Defining S-Function Block Characteristics 3-18
Processing S-Function Parameters 3-19

Converting Level-1 MATLAB S-Functions to Level-2 3-19

Writing S-Functions in C

4 |

Introduction 4-2
About Writing C S-Functions 4-2
Creating C MEX S-Functions 4-3

Building S-Functions Automatically 4-5
About Building S-Functions Automatically 4-5
Deploying the Generated S-Function 4-10
How the S-Function Builder Builds an S-Function 4-11

S-Function Builder DialogBox 4-12
About S-Function Builder 4-12
Parameters/S-Function Name Pane 4-14
Port/Parameter Pane 4-15
Initialization Pane, 4-16
Data Properties Pane 4-18
Input Ports Pane, 4-19
Output Ports Pane 4-21
Parameters Pane 4-22
Data Type Attributes Pane 4-23
Libraries Pane i 4-24
OutputsPane i, 4-27
Continuous Derivatives Pane 4-31
Discrete Update Pane 4-33
BuildInfoPane i, 4-34

Example: Modeling a Two-Input/Two-Output System 4-37

vii

Example of a Basic C MEX S-Function 4-43
Introducing an Example of a Basic C MEX S-Function ... 4-43

Definesand Includes, 4-46
Callback Method Implementations 4-46
Simulink/Real-Time Workshop Interfaces 4-48
Building the Timestwo Example 4-49
Templates for C S-Functions 4-50
About the Templates for C S-Functions 4-50
S-Function Source File Requirements 4-50
The SImStructottt 4-53
Data Types in S-Functions 4-53
Compiling C S-Functionsc i, 4-53

Integrating Existing C Functions into Simulink Models

with the Legacy Code Tool 4-55
L0 =) T 1= 4-55
Example of Integrating Existing C Functions into Simulink

Models with the Legacy Code Tool 4-58
Registering Legacy Code Tool Data Structures 4-62
Declaring Legacy Code Tool Function Specifications 4-64
Generating and Compiling the S-Functions 4-71
Generating a Masked S-Function Block for Calling a

Generated S-Function, 4-72
Forcing Simulink® Accelerator Mode to Use S-Function

TLC Inlining Codeo, 4-73
Calling Legacy C++ Functionscccuvvv..... 4-73
Handling Multiple Registration Files 4-74
Deploying Generated S-Functions 4-75
Legacy Code Tool Demos 4-75
Legacy Code Tool Limitations 4-75

How the Simulink Engine Interacts with C

S-Functions 4-77
Introduction 4-77
Process View ... i 4-77
Data View i e 4-85
Writing Callback Methods 4-90

Using S-Functions in Normal Mode Referenced
Modelst e e e 4-91

viii Contents

Supporting the Use of Multiple Instances of Referenced

Models That Are in Normal Mode ...

Debugging C MEX S-Functions
About Debugging C MEX S-Functions ..

Debugging C MEX S-Functions in the Simulink

Environment

Debugging C MEX S-Functions Using Third-Party

Software

Converting Level-1 C MEX S-Functions

to Level-2

Guidelines for Converting Level-1 C MEX S-Functions to

Level-2
Obsolete Macros

. 4-101

Creating C++ S-Functions

5

Creating a C++ Source File

Making C++ Objects Persistent

Building C++ S-Functions

References

5-2

5-3

5-5

Creating Fortran S-Functions

6

Level-1 Versus Level-2 S-Functions ...

Creating Level-1 Fortran S-Functions
Fortran MEX Template File
Example of a Level-1 Fortran S-Function

6-2

6-3
6-3
6-3

ix

Inline Code Generation Example 6-6

Creating Level-2 Fortran S-Functions 6-8
About Creating Level-2 Fortran S-Functions 6-8
Template File i, 6-8
C/Fortran Interfacing Tips, 6-8
Constructing the Gatewayccvvo. ... 6-13
Example C MEX S-Function Calling Fortran Code 6-16

Porting Legacy Code 6-18
Find the States 6-18
Sample Times i, 6-19
Store Data i 6-19
Use Flintsif Needed 6-19
Considerations for Real Time 6-20

Using Work Vectors
7

About DWork Vectors, 7-2
What is a DWork Vector? 7-2
Advantages of DWork Vectors 7-2
DWork Vectors and the Simulink Engine 7-3

DWork Vectors and the Real-Time Workshop Product 7-4

Types of DWork Vectors 7-5
How to Use DWork Vectors 7-7
Using DWork Vectors in C MEX S-Functions 7-7
DWork Vector C MEX Macrosccvviuininnnn. 7-10

Using DWork Vectors in Level-2 MATLAB S-Functions .. 7-12
Using DWork Vectors to Pass Data Between

S-Functionsc.oiiiiiiiiiiiiinneen. 7-14
Using DWork Vectors With Legacy Code 7-17
DWork Vector Examples 7-18
General DWork Vector 7-18
DWork Scratch Vector 7-20

X Contents

DState Work Vector00, 7-22

DWork Mode Vectorc.ouiiiiieennnnnnnnn 7-24
Level-2 MATLAB S-Function DWork Vector 7-27
Elementary Work Vectors 7-29
Description of Elementary Work Vector 7-29
Relationship to DWork Vectors 7-29
Using Elementary Work Vectors 7-30
Additional Work Vector Macroscoouu.... 7-32
Elementary Work Vector Examples 7-33

Implementing Block Features

8

Dialog Parameters iiiinnnn. 8-2
About Dialog Parametersccoiviii... .. 8-2
Tunable Parameters 8-5

Run-Time Parameters 8-8
About Run-Time Parameters 8-8
Creating Run-Time Parameters 8-9
Updating Run-Time Parameters 8-15
Tuning Run-Time Parameters 8-17
Accessing Run-Time Parameters 8-17

Input and Output Ports 8-19
Creating Input Ports for C S-Functions 8-19
Creating Input Ports for Level-2 MATLAB S-Functions .. 8-23
Creating Output Ports for C S-Functions 8-25
Creating Output Ports for Level-2 MATLAB

S-Functionsiiiiiiiiiiii i 8-26
Scalar Expansionof Inputs 8-26
Masked Multiport S-Functions 8-28

Custom Data Typesiiiiiiinnnneennnn. 8-29
Using Custom Data Types in C S-Functions 8-29
Using Custom Data Types in Level-2 MATLAB

S-Functionsiiiiiii e e e 8-31

xi

xii

Contents

Sample Times 8-33

About Sample Times, 8-33
Block-Based Sample Timescccov oo, 8-34
Specifying Port-Based Sample Times 8-38
Hybrid Block-Based and Port-Based Sample Times 8-44
Multirate S-Function Blocks 8-45
Multirate S-Functions and Sample Time Hit

Calculationsccoiiiiiiiiii e, 8-47
Synchronizing Multirate S-Function Blocks 8-47

Specifying Model Reference Sample Time Inheritance 8-48

Zero Crossings ...ttt 8-51
S-Function Compliance with the SimState 8-55
SimState Compliance Specification for Level-2 MATLAB
S-Functionsiiiiii e e e 8-55
SimState Compliance Specification for C-MEX
S-Functionsiiiiiiiii e i 8-56
Matrices in C S-Functions 8-58
MX Array Manipulation 0iiinn... 8-58
Memory Allocation0iiiiiinnnnnn.. 8-59
Function-Call Subsystems 8-60
Sim Viewing Devices in External Mode 8-65
Frame-Based Signals 8-66
About Frame-Based Signals 8-66
Using Frame-Based Signals in C S-Functions 8-66
Using Frame-Based Signals in Level-2 MATLAB
S-Functionsiiiiiiiiiiiii i 8-68
Error Handling 8-69
About Handling Exrors, 8-69
Exception Free Code 8-70
ssSetErrorStatus Termination Criteria 8-71
Checking Array Bounds, 8-72
C MEX S-Function Examples 8-73

About S-Function Examples 8-73

Continuous Statesc.tiiiiiinnnneeennnn. 8-73
Discrete Stateso 8-80
Continuous and Discrete States 8-86
Variable Sample Time, 8-94
Array Inputs and Outputsccvvii. ... 8-100
Zero-Crossing Detection 8-111
Discontinuities in Continuous States 8-129

S-Function Callback Methods — Alphabetical
List

92

S-Function SimStruct Functions Reference

10|

Introduction e 10-2
About SimStruct Functions 10-2
Language Supporto, 10-2
The SimStructcciiiiii i, 10-2

SimStruct Macros and Functions Listed by Usage 10-3

Buses ... 10-3
DataType ... 10-4
Dialog Box Parameters, 10-5
Error Handling and Status 10-6
Function Call 10-6
Input and Output Ports 10-7
Model Reference 10-14
Run-Time Parameters u... 10-15
Sample Time 10-16
Simulation Information 10-17
State and Work Vector 10-20
Code Generationc.uuuiiiminnnneeennnnn 10-23
Miscellaneousc.ooiiiiiiii e 10-25

xiii

xiv

S-Function Options — Alphabetical List

11

Contents

A

Examples

S-Function Features A-2
S-Function Examples A-2
Writing S-Functions in MATLAB A-2
S-Function Builder A-2
Writing S-Functionsin C A-2
Creating Fortran S-Functions A-3
Using Work Vectorscciiiiiiiinnnn... A-3
Index

Overview of S-Functions

¢ “What Is an S-Function?” on page 1-2

e “Using S-Functions in Models” on page 1-3
¢ “How S-Functions Work” on page 1-7

¢ “‘Implementing S-Functions” on page 1-11
¢ “S-Function Concepts” on page 1-13

¢ “S-Function Examples” on page 1-20

l Overview of S-Functions

What Is an S-Function?

S-functions (system-functions) provide a powerful mechanism for extending
the capabilities of the Simulink® environment. An S-function is a computer
language description of a Simulink block written in MATLAB®, C, C++, or
Fortran. C, C++, and Fortran S-functions are compiled as MEX files using the
mex utility (see “Building MEX-Files” in MATLAB External Interfaces). As
with other MEX files, S-functions are dynamically linked subroutines that the
MATLAB interpreter can automatically load and execute.

S-functions use a special calling syntax called the S-function API that enables
you to interact with the Simulink engine. This interaction is very similar to
the interaction that takes place between the engine and built-in Simulink
blocks.

S-functions follow a general form and can accommodate continuous, discrete,
and hybrid systems. By following a set of simple rules, you can implement
an algorithm in an S-function and use the S-Function block to add it to a
Simulink model. After you write your S-function and place its name in an
S-Function block (available in the User-Defined Functions block library),
you can customize the user interface using masking (see “Creating Custom
Blocks”).

You can use S-functions with the Real-Time Workshop® product. You can also
customize the code generated for S-functions by writing a Target Language
Compiler (TLC) file. See “Integrating External Code With Generated C and
C++ Code” in the Real-Time Workshop User’s Guide for more information.

Using S-Functions in Models

Using S-Functions in Models

In this section...

“Overview” on page 1-3

“Passing Parameters to S-Functions” on page 1-5

“When to Use an S-Function” on page 1-6

Overview

To incorporate a C MEX S-function or legacy Level-1 MATLAB S-function into
a Simulink model, drag an S-Function block from the User-Defined Functions
block library into the model. Then specify the name of the S-function in the
S-function name field of the S-Function block’s Block Parameters dialog
box, as illustrated in the following figure.

1-3

l Overview of S-Functions

1 ——P timestwo 4}

.-

LZ] Function Block Parameters: S-Fundi x|

—S-Function

User-definable block. Blocks can be wiitten in C, M [lewel-1], Fartran, and Ada and
must conform o S-function standards. The variables b« u, and flag are
automatically paszed to the S-function by Sinulink. Y'ou can specify additional
parameters in the 'S-function parameters' figld. [f the S-function block. requires
additional source files far the Real-Time Workshop build process, specify the
filenames in the 'S-function modules' field. Enter the filenames only; do not use
extensions or full pathhames, e.q.. enter ‘zrc srcl’, not “sre.c srel.cl

—PFarameters

S-function name: Itimestwn Edit |
\

S-function parameters: I

S-function modules: I"

ok ;I Cancel | Help Apply

\

\

/*

* File : timestwo.c

* Abstract:

* An example C-file S-function for
* multiplying an input by 2:

* y = 2*u

*/

In this example, the model contains an S-Function block that references an
instance of the C MEX file for the S-function timestwo.c.

Note If the MATLAB path includes a C MEX file and a MATLAB file having
the same name referenced by an S-Function block, the S-Function block uses
the C MEX file.

Using S-Functions in Models

-

-

E! Function Block Parameters: Level-2 MAT il

-
-
-

-
am=
-
-

To incorporate a Level-2 MATLAB S-function into a model, drag a Level-2
MATLAB S-Function block from the User-Defined Functions library into the
model. Specify the name of the S-function in the S-function name field.

Passing Parameters to S-Functions

The S-Function block S-function parameters and Level-2 MATLAB
S-Function block Parameters fields allow you to specify parameter values

to pass to the corresponding S-function. To use these fields, you must

know the parameters the S-function requires and the order in which the
function requires them. (If you do not know, consult the S-function’s author,
documentation, or source code.) Enter the parameters, separated by a
comma, in the order required by the S-function. The parameter values can be
constants, names of variables defined in the MATLAB or model workspace, or
MATLAB expressions.

The following example illustrates usage of the Parameters field to enter
user-defined parameters for a Level-2 MATLAB S-function.

ﬁ\}r P limintm =|:|
Sine Wawe _ .. S-Function - g Soope .o
-

— M-5-Function

for this block.

User-definable block written using the MATLAB S-Function APL
Specify the name of a MATLAB S-Function below. Use the
Parameters field to specify a comma-separated list of parameters

— Parameters

S-function name: Imlﬂle Edit |

Parameters: ||

0K | LCancel | Help | Apply | Time offset: 0

1-5

l Overview of S-Functions

1-6

The model in this example incorporates the sample S-function
msfcn_limintm.m.

The msfcn_limintm.m S-function accepts three parameters: a lower bound,
an upper bound, and an initial condition. The S-function outputs the time
integral of the input signal if the time integral is between the lower and upper
bounds, the lower bound if the time integral is less than the lower bound, and
the upper bound if the time integral is greater than the upper bound. The
dialog box in the example specifies a lower and upper bound and an initial
condition of 2, 3, and 2.5, respectively. The scope shows the resulting output
when the input is a sine wave of amplitude 1.

See “Processing S-Function Parameters” on page 3-19 and “Error Handling”
on page 8-69 for information on how to access user-specified parameters in
an S-function.

You can use the masking facility to create custom dialog boxes and icons for
your S-Function blocks. Masked dialog boxes can make it easier to specify
additional parameters for S-functions. For a discussion on masking, see
“Working with Block Masks” in Using Simulink.

When to Use an S-Function
You can use S-functions for a variety of applications, including:

® Creating new general purpose blocks

Adding blocks that represent hardware device drivers

® Incorporating existing C code into a simulation (see “Integrating Existing C
Functions into Simulink Models with the Legacy Code Tool” on page 4-55)

Describing a system as a set of mathematical equations

¢ Using graphical animations (see the inverted pendulum demo, penddemo)

The most common use of S-functions is to create custom Simulink blocks (see
“Creating Custom Blocks” in Using Simulink). When you use an S-function to
create a general-purpose block, you can use it many times in a model, varying
parameters with each instance of the block.

How S-Functions Work

How S-Functions Work

In this section...

“Introduction” on page 1-7

“Simulation Stages” on page 1-8
“S-Function Callback Methods” on page 1-9

“Mathematics of Simulink Blocks” on page 1-7

Introduction

To create S-functions, you need to understand how S-functions work. Such
knowledge requires an understanding of how the Simulink engine simulates a
model, including the mathematics of blocks. This section begins by explaining
the mathematical relationships between the inputs, states, and outputs of

a block.

Mathematics of Simulink Blocks

A Simulink block consists of a set of inputs, a set of states, and a set of
outputs, where the outputs are a function of the simulation time, the inputs,

and the states.

[Inputl

x
[3tates)

¥
[Dutput)

The following equations express the mathematical relationships between the
inputs, outputs, states, and simulation time

y = fO(trxyu)
x= fd(t7x7u)

xdkﬂ = fu (ta Xes xdk ’ u); (Update)

where x=[x,;x4].

(Outputs)

(Derivatives)

l Overview of S-Functions

1-8

Simulation Stages

Execution of a Simulink model proceeds in stages. First comes the
initialization phase. In this phase, the Simulink engine incorporates library
blocks into the model, propagates signal widths, data types, and sample times,
evaluates block parameters, determines block execution order, and allocates
memory. The engine then enters a simulation loop, where each pass through
the loop is referred to as a simulation step. During each simulation step,

the engine executes each block in the model in the order determined during
initialization. For each block, the engine invokes functions that compute the
block states, derivatives, and outputs for the current sample time.

The following figure illustrates the stages of a simulation. The inner
integration loop takes place only if the model contains continuous states.

The engine executes this loop until the solver reaches the desired accuracy
for the state computations. The entire simulation loop then continues until
the simulation is complete. See “Simulating Dynamic Systems” in Using
Simulink for more detailed information on how the engine executes a model.
See “How the Simulink Engine Interacts with C S-Functions” on page 4-77 for
a description of how the engine calls the S-function API during initialization
and simulation.

How S-Functions Work

(Tnitia]ize model)

Calculate time of next sample hit
(only for variable sample time blocks)

L

h

Calculate cutputs

.

Update discrete states

» Clean up at final
:[) time step

Caleudate derivatives

Simulation loop

L 4

Caleulate outputs k_ > Integration

(miner time step)

Caleulate derivatives

Locate zero crossings

How the Simulink® Engine Performs Simulation

S-Function Callback Methods

An S-function comprises a set of S-function callback methods that perform
tasks required at each simulation stage. During simulation of a model, at
each simulation stage, the Simulink engine calls the appropriate methods for
each S-Function block in the model. Tasks performed by S-function callback
methods include:

1-9

l Overview of S-Functions

1-10

e Initialization — Prior to the first simulation loop, the engine initializes the

S-function, including:

= Initializing the SimStruct, a simulation structure that contains
information about the S-function

Setting the number and dimensions of input and output ports

Setting the block sample times

Allocating storage areas

Calculation of next sample hit — If you created a variable sample time
block, this stage calculates the time of the next sample hit; that 1s, it
calculates the next step size.

Calculation of outputs in the major time step — After this call is complete,
all the block output ports are valid for the current time step.

Update of discrete states in the major time step — In this call, the block
performs once-per-time-step activities such as updating discrete states.

Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,

the engine calls the output and derivative portions of your S-function at
minor time steps. This i1s so the solvers can compute the states for your
S-function. If your S-function has nonsampled zero crossings, the engine
also calls the output and zero-crossings portions of your S-function at minor
time steps so that it can locate the zero crossings.

Note See “How Simulink Works” in Using Simulink for an explanation of
major and minor time steps.

Implementing S-Functions

Implementing S-Functions

In this section...
“MATLAB S-Functions” on page 1-11
“MEX S-Functions” on page 1-12

MATLAB S-Functions

Level-2 MATLAB S-functions allow you to create blocks with many of the
features and capabilities of Simulink built-in blocks, including:

Multiple input and output ports

The ability to accept vector or matrix signals

Support for various signal attributes including data type, complexity, and
signal frames

Ability to operate at multiple sample rates

A Level-2 MATLAB S-function consists of a setup routine to configure the
basic properties of the S-function, and a number of callback methods that the
Simulink engine invokes at appropriate times during the simulation.

A basic annotated version of the template resides at msfuntmpl _basic.m.

The template consists of a top-level setup function and a set of skeleton
subfunctions, each of which corresponds to a particular callback method.
Each callback method performs a specific S-function task at a particular
point in the simulation. The engine invokes the subfunctions using function
handles defined in the setup routine. See “Level-2 MATLAB S-Function
Callback Methods” on page 3-6 for a table of the supported Level-2 MATLAB
S-function callback methods.

A more detailed Level-2 MATLAB S-function template resides at
msfuntmpl.m.

We recommend that you follow the structure and naming conventions of the

templates when creating Level-2 MATLAB S-functions. This makes it easier
for others to understand and maintain the MATLAB S-functions that you

1-11

l Overview of S-Functions

1-12

create. See Chapter 3, “Writing S-Functions in MATLAB” for information on
creating Level-2 MATLAB S-functions.

MEX S-Functions

Like a Level-2 MATLAB S-function, a MEX S-function consists of a set

of callback methods that the Simulink engine invokes to perform various
block-related tasks during a simulation. MEX S-functions can be implemented
in C, C++, or Fortran. The engine directly invokes MEX S-function routines
instead of using function handles as with MATLAB S-functions. Because the
engine invokes the functions directly, MEX S-functions must follow standard
naming conventions specified by the S-function API.

An annotated C MEX S-function template resides at sfuntmpl _doc.c.

The template contains skeleton implementations of all the required and
optional callback methods that a C MEX S-function can implement.

For a more basic version of the template see sfuntmpl basic.c.

MEX Versus MATLAB S-Functions

Level-2 MATLAB and MEX S-functions each have advantages. The advantage
of Level-2 MATLAB S-functions is speed of development. Developing Level-2
MATLAB S-functions avoids the time consuming compile-link-execute

cycle required when developing in a compiled language. Level-2 MATLAB
S-functions also have easier access to MATLAB toolbox functions and can
utilize the MATLAB Editor/Debugger.

MEX S-functions are more appropriate for integrating legacy code into a
Simulink model. For more complicated systems, MEX S-functions may
simulate faster than MATLAB S-functions because the Level-2 MATLAB
S-function calls the MATLAB interpreter for every callback method.

See Chapter 2, “Selecting an S-Function Implementation” for information on
choosing the type of S-function best suited for your application.

S-Function Concepts

S-Function Concepts

In this section...

“Direct Feedthrough” on page 1-13
“Dynamically Sized Arrays” on page 1-14
“Setting Sample Times and Offsets” on page 1-15

Direct Feedthrough

Direct feedthrough means that the output (or the variable sample time for
variable sample time blocks) is controlled directly by the value of an input
port signal. Typically, an S-function input port has direct feedthrough if

¢ The output function (nd10utputs) is a function of the input u. That is, there

is direct feedthrough if the input u is accessed by md10utputs. Outputs can
also include graphical outputs, as in the case of an XY Graph scope.

¢ The “time of next hit” function (md1GetTimeOfNextVarHit) of a variable
sample time S-function accesses the input u.

An example of a system that requires its inputs (that is, has direct
feedthrough) is the operation

y=kxu,

where u 1s the input, k is the gain, and y is the output.

An example of a system that does not require its inputs (that is, does not have
direct feedthrough) is the simple integration algorithm

y=x

X=u,

where x is the state, x 1s the state derivative with respect to time, u 1s the
input, and y is the output. Simulink integrates the variable x.

1-13

l Overview of S-Functions

1-14

It is very important to set the direct feedthrough flag correctly because it
affects the execution order of the blocks in your model and is used to detect
algebraic loops (see “Algebraic Loops” in Using Simulink). If the simulation
results for a model containing your S-function do not converge, or the
simulation fails, you may have the direct feedthrough flag set incorrectly.
Try turning on the direct feedthrough flag and setting the Algebraic
loop solver diagnostic to warning (see the “Algebraic loop” option on the
“Diagnostics Pane: Solver” reference page in Simulink Graphical User
Interface). Subsequently running the simulation displays any algebraic loops
in the model and shows if the engine has placed your S-function within an
algebraic loop.

Dynamically Sized Arrays

You can write your S-function to support arbitrary input dimensions. In this
case, the Simulink engine determines the actual input dimensions when
the simulation is started by evaluating the dimensions of the input vectors
driving the S-function. Your S-function can also use the input dimensions to
determine the number of continuous states, the number of discrete states,
and the number of outputs.

Note A dynamically sized input can have a different size for each instance of
the S-function in a particular model or during different simulations, however
the input size of each instance of the S-function is static over the course of a
particular simulation.

A C MEX S-function and Level-2 MATLAB S-function can have multiple input
and output ports and each port can have different dimensions. The number of
dimensions and the size of each dimension can be determined dynamically.

For example, the following illustration shows two instances of the same
S-Function block in a model.

S-Function Concepts

Moz —

spstem

Tz

S-Fanction

CE}—————!

spstem

Clock

S-Function

The upper S-Function block is driven by a block with a three-element output
vector. The lower S-Function block is driven by a block with a scalar output.
By specifying that the S-Function block has dynamically sized inputs, the
same S-function can accommodate both situations. The Simulink engine
automatically calls the block with the appropriately sized input vector.
Similarly, if other block characteristics, such as the number of outputs or the
number of discrete or continuous states, are specified as dynamically sized,
the engine defines these vectors to be the same length as the input vector.

See “Input and Output Ports” on page 8-19 for more information on

configuring S-function input and output ports.

Setting Sample Times and Offsets

Both Level-2 MATLAB and C MEX S-functions provide the following sample
time options, which allow for a high degree of flexibility in specifying when an
S-function executes:

¢ Continuous sample time — For S-functions that have continuous states
and/or nonsampled zero crossings (see “How Simulink Works” in Using
Simulink for an explanation of zero crossings). For this type of S-function,

the output changes in minor time steps.

¢ Continuous, but fixed in minor time step sample time — For S-functions
that need to execute at every major simulation step, but do not change

value during minor time steps.

¢ Discrete sample time — If the behavior of your S-function is a function of
discrete time intervals, you can define a sample time to control when the
Simulink engine calls the S-function. You can also define an offset that
delays each sample time hit. The value of the offset cannot exceed the

corresponding sample time.

A sample time hit occurs at time values determined by the formula

1-15

l Overview of S-Functions

1-16

TimeHit = (n * period) + offset

where the integer n is the current simulation step. The first value of n is
always zero.

If you define a discrete sample time, the engine calls the S-function
md1Output and mdlUpdate routines at each sample time hit (as defined
in the previous equation).

e Variable sample time — A discrete sample time where the intervals
between sample hits can vary. At the start of each simulation step,
S-functions with variable sample times are queried for the time of the next
hit.

® Inherited sample time — Sometimes an S-function has no inherent sample
time characteristics (that is, it is either continuous or discrete, depending
on the sample time of some other block in the system). In this case, you
can specify that the sample time is inherited. A simple example of this is a
Gain block that inherits its sample time from the block driving it.

An S-function can inherit its sample time from
= The driving block

= The destination block

= The fastest sample time in the system

To specify an S-function sample time is inherited, use -1 in Level-2
MATLAB S-functions and INHERITED_SAMPLE_TIME in C MEX S-functions
as the sample time. For more information on the propagation of sample
times, see “How Propagation Affects Inherited Sample Times” in the
Simulink User’s Guide.

S-functions can be either single or multirate; a multirate S-function has
multiple sample times.

Sample times are specified in pairs in this format: [sample_time,
offset_time].

Valid € MEX S-Function Sample Times

The valid sample time pairs for a C MEX S-function are

S-Function Concepts

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample_time_period, offset]
[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS_SAMPLE_TIME = 0.0
FIXED_IN_MINOR_STEP_OFFSET = 1.0
VARIABLE_SAMPLE_TIME = -2.0

and variable names in italics indicate that a real value is required.
Alternatively, you can specify that the sample time is inherited from the
driving block. In this case, the C MEX S-function has only one sample time
pair, either

[INHERITED_SAMPLE_TIME, 0.0]
or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

where

INHERITED_ SAMPLE_TIME = -1.0

Valid Level-2 MATLAB S-Function Sample Times
The valid sample time pairs for a Level-2 MATLAB S-function are

[0 offset] % Continuous sample time
[discrete_sample_time_period, offset] % Discrete sample time
[-1, 0] % Inherited sample time
[-2, 0] % Variable sample time

where variable names in italics indicate that a real value is required. When

using a continuous sample time, an offset of 1 indicates the output is fixed

in minor integration time steps. An offset of 0 indicates the output changes
at every minor integration time step.

1-17

l Overview of S-Functions

1-18

Guidelines for Choosing a Sample Time
Use the following guidelines for help with specifying sample times:

e A continuous S-function that changes during minor integration steps
should register the [CONTINUOUS_SAMPLE_TIME, 0.0] sample time.

e A continuous S-function that does not change during minor
integration steps should register the [CONTINUOUS SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

e A discrete S-function that changes at a specified rate should register the
discrete sample time pair, [discrete_sample time period, offset],
where

discrete_sample period > 0.0

and

0.0 offset < discrete_sample_period

e A discrete S-function that changes at a variable rate should register the
variable-step discrete sample time.

[VARIABLE_SAMPLE_TIME, 0.0]

In a C MEX S-function, the md1GetTimeOfNextVarHit routine is called to
get the time of the next sample hit for the variable-step discrete task. In
a Level-2 MATLAB S-function, the NextTimeHit property is set in the
Outputs method to set the next sample hit.

If your S-function has no intrinsic sample time, you must indicate that your
sample time is inherited. There are two cases:

¢ An S-function that changes as its input changes, even during minor
integration steps, should register the [INHERITED SAMPLE_TIME, 0.0]
sample time.

¢ An S-function that changes as its input changes, but does not
change during minor integration steps (that is, remains fixed during
minor time steps), should register the [INHERITED SAMPLE_TIME,
FIXED_IN_MINOR_STEP_OFFSET] sample time.

S-Function Concepts

The Scope block is a good example of this type of block. This block runs at
the rate of its driving block, either continuous or discrete, but never runs
in minor steps. If it did, the scope display would show the intermediate

computations of the solver rather than the final result at each time point.

See “Sample Times” on page 8-33 for information on implementing different
types of sample times in S-functions.

1-19

l Overview of S-Functions

S-Function Examples

In this section...

“Overview of Examples” on page 1-20

“Level-2 MATLAB S-Function Examples” on page 1-22
“Level-1 MATLAB S-Function Examples” on page 1-22
“C S-Function Examples” on page 1-25

“Fortran S-Function Examples” on page 1-29

“C++ S-Function Examples” on page 1-30

Overview of Examples

To run an example:

1 In the MATLAB Command Window, enter sfundemos.

The S-function demo library opens.

-_Librarv:sfundemns _II:|| XI
File Edit View Formab Help
re
- 2
S-Function Examples
MATLAE C-files G+ Fortran
MATLAE file C-file G4+ Fortran
S-functions S-functions S-functions S-functions
Copyright 1880-2010 The MathWaordks, Inc. VI

Each block represents a category of S-function examples.

2 Double-click a category to display the examples that it includes. For
example, click C-files.

1-20

S-Function Examples

E!Lihrar'y: sfundemos/C-file S-functions
File Edit Wiew Formab Help

Continuous Driscrete [rata type

Signals and

Multiplication mdulirate
parameters

S-function

Zero crossing Miscellaneous)
Builder

Basic
C-MEX,
Template

Template

3 Double-click a block to open and run the example that it represents.
It might be helpful to examine some sample S-functions as you read the next
chapters. Code for the examples is stored in the following folder under the

MATLAB root folder.

MATLAB code toolbox/simulink/simdemos/simfeatures

C, C++, and Fortran code toolbox/simulink/simdemos/simfeatures/src

1-21

l Overview of S-Functions

1-22

Level-2 MATLAB S-Function Examples

The matlabroot/toolbox/simulink/simdemos/simfeatures folder contains
many Level-2 MATLAB S-functions. Consider starting off by looking at these

files.

Filename

msfcn_dsc.m

msfcn_limintm.m

msfcn_multirate.m

msfcn_times_two.m

msfcn_unit_delay

msfcn_varpulse.m

msfcn_vs.m

Model Name

msfcndemo_sfundsc1.mdl

msfcndemo_limintm.mdl

msfcndemo_multirate.mdl

msfcndemo_timestwo.mdl

.m msfcndemo_sfundsc2.mdl

msfcndemo_varpulse.mdl

msfcndemo_vsfunc.mdl

Description

Implement an S-function with an
inherited sample time.

Implement a continuous limited
integrator where the output is
bounded by lower and upper bounds
and includes initial conditions.

Implement a multirate system.

Implement an S-function that
doubles its input.

Implement a unit delay.

Implement a variable pulse width
generator by calling set_param
from within a Level-2 MATLAB
S-function. Also demonstrates how
to use custom set and get methods
for the block SimState.

Implement a variable sample time
block in which the first input is
delayed by an amount of time
determined by the second input.

Level-1 MATLAB S-Function Examples

The matlabroot/toolbox/simulink/simdemos/simfeatures folder also
contains many Level-1 MATLAB S-functions, provided as reference for legacy
models. Most of these Level-1 MATLAB S-functions do not have associated

demo models.

S-Function Examples

Filename Description

csfunc.m Define a continuous system in state-space format.

dsfunc.m Define a discrete system in state-space format.

limintm.m Implement a continuous limited integrator where the
output is bounded by lower and upper bounds and
includes initial conditions.

mixedm.m Implement a hybrid system consisting of a continuous

integrator in series with a unit delay.

sfun_varargm.m

Implement an S-function that shows how to use the
MATLAB command varargin.

simom.m

Implement a system in state-space format with
internal A, B, C, and D matrices, using the equations

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is the input vector, and
y is the output vector. The A, B, C, and D matrices are
embedded in the MATLAB S-function.

simom2.m

Implement a system in state-space format with
external A, B, C, and D matrices. The state-space
structure is the same as in simom.m, but the A, B, C,
and D matrices are provided externally as parameters
to this S-function.

vdlmintm.m

Implement a discrete limited integrator. This example
is identical to vliimintm.m, except that the limited
integrator is discrete.

vdpm.m

Implement the Van der Pol equation (similar to the
demo model, vdp).

1-23

l Overview of S-Functions

Filename Description

vliimintm.m Implement a continuous limited integrator. This
S-function illustrates how to build an S-function that
can accommodate a dynamic input and state width.

vsfunc.m Illustrate how to create a variable sample time block.
This S-function implements a variable step delay in
which the first input is delayed by an amount of time
determined by the second input.

1-24

S-Function Examples

C S-Function Examples

The matlabroot/toolbox/simulink/simdemos/simfeatures/src folder
contains examples of C MEX S-functions, many of which have a MATLAB
S-function counterpart. The C MEX S-functions are listed in the following

table.
Filename Model Name Description
barplot.c sfcndemo_barplot.mdl Access Simulink signals without using
the standard block inputs.
csfunc.c sfcndemo_csfunc.mdl Implement a continuous system.

dlimintc.c

No model available

Implement a discrete-time limited
integrator.

dsfunc.c sfcndemo_dsfunc.mdl Implement a discrete system.
limintc.c No model available Implement a limited integrator.
mixedm.c sfcndemo_mixedm.mdl Implement a hybrid dynamic system

consisting of a continuous integrator
(1/s) in series with a unit delay (1/z).

mixedmex.c

sfcndemo_mixedmex.mdl

Implement a hybrid dynamic system
with a single output and two inputs.

quantize.c

sfcndemo_sfun_quantize.md]

| Implement a vectorized quantizer.
Quantizes the input into steps as
specified by the quantization interval
parameter, q.

sdotproduct.c

sfcndemo_sdotproduct.mdl

Compute dot product
(multiply-accumulate) of two real or
complex vectors.

sfbuilder_bususage.

c sfbuilder_bususage.mdl

Access S-Function Builder with a bus
input and output.

sftable2.c

No model available

Implement a two-dimensional table
lookup.

sfun_atol.c

sfcndemo_sfun_atol.mdl

Set different absolute tolerances for each

continuous state.

1-25

l Overview of S-Functions

1-26

Filename

Model Name

Description

sfun_cplx.c

sfcndemo_cplx.mdl

Add complex data for an S-function with
one input port and one parameter.

sfun_directlook.c

No model available

Implement a direct 1-D lookup.

sfun_dtype_io.c

sfcndemo_dtype_io.mdl

Implement an S-function that uses
Simulink data types for inputs and
outputs.

sfun_dtype_param.c

sfcndemo_dtype param.mdl

Implement an S-function that uses
Simulink data types for parameters.

sfun_dynsize.c

sfcndemo_sfun_dynsize.mdl

Implements dynamically-sized outputs .

sfun_errhdl.c

sfcndemo_sfun_errhdl.mdl

Check parameters using the
mdlCheckParameters S-function
routine.

sfun_fcncall.c

sfcndemo_sfun_fcncall.mdl

Execute function-call subsystems on the
first and second output elements.

sfun_frmad.c

sfcndemo_frame.mdl

Implement a frame-based A/D converter.

sfun_frmda.c

sfcndemo_frame.mdl

Implement a frame-based D/A converter.

sfun_frmdft.c

sfcndemo_frame.mdl

Implement a multichannel frame-based
Discrete-Fourier transformation (and its
inverse).

sfun_frmunbuff.c

sfcndemo_frame.mdl

Implement a frame-based unbuffer
block.

sfun_multiport.c

sfcndemo_sfun_multiport.mdXConfigure multiple input and output

ports.

sfun_manswitch.c

No model available

Implement a manual switch.

sfun_matadd.c

sfcndemo_matadd.mdl

Add matrices in an S-function with one
input port, one output port, and one
parameter.

sfun_multirate.c

sfcndemo_sfun_multirate.mgdDemonstrate how to specify port-based

sample times.

sfun_port_constant.

c sfcndemo_port_constant.md]

| Demonstrate how to specify constant
port-based sample times.

S-Function Examples

Filename

Model Name

Description

sfun_port_triggered

asfcndemo_port_triggered.mgDemonstrate how to use port-based

sample times in a triggered subsystem.

sfun_runtimet.c

sfcndemo_runtime.mdl

Implement run-time parameters for all
tunable parameters.

sfun_runtime2.c

sfcndemo_runtime.mdl

Register individual run-time
parameters.

sfun_runtime3.c

sfcndemo_runtime.mdl

Register dialog parameters as run-time
parameters.

sfun_runtime4.c

sfcndemo_runtime.mdl

Implement run-time parameters as a
function of multiple dialog parameters.

sfun_simstate.c

sfcndemo_sfun_simstate.md]

| Demonstrate the S-function API for
saving and restoring the SimState.

sfun_zc.c

sfcndemo_sfun_zc.mdl

Demonstrate use of nonsampled zero
crossings to implement abs(u). This
S-function is designed to be used with a
variable-step solver.

sfun_zc_sat.c

sfcndemo_sfun_zc_sat.mdl

Demonstrate zero crossings with
saturation.

sfunmem.c sfcndemo_sfunmem.mdl Implement a one-integration-step delay
and hold memory function.
simomex.c sfcndemo_simomex.mdl Implement a single-input, two-output

state-space dynamic system described
by the state-space equations:

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is vector of

inputs, and y is the vector of outputs.

1-27

l Overview of S-Functions

Filename Model Name Description

stspace.c sfcndemo_stspace.mdl Implement a set of state-space
equations. You can turn this into a
new block by using the S-Function
block and mask facility. This example
MEX file performs the same function
as the built-in State-Space block. This
is an example of a MEX file where the
number of inputs, outputs, and states is
dependent on the parameters passed in
from the workspace.

stvetf.c sfcndemo_stvetf.mdl Implement a continuous-time transfer
function whose transfer function
polynomials are passed in via the input
vector. This is useful for continuous time
adaptive control applications.

stvdtf.c sfcndemo_stvdtf.mdl Implement a discrete-time transfer
function whose transfer function
polynomials are passed in via the input
vector. This is useful for discrete-time
adaptive control applications.

stvmgain.c sfcndemo_stvmgain.mdl Implement a time-varying matrix gain.
table3.c No model available Implement a 3-D lookup table.
timestwo.c sfcndemo_timestwo.mdl Implement a C MEX S-function that

doubles its input.

vdlmintc.c No model available Implement a discrete-time vectorized
limited integrator.

vdpmex.c sfcndemo_vdpmex.mdl Implement the Van der Pol equation.

1-28

S-Function Examples

Filename Model Name Description
vlimintc.c No model available Implement a vectorized limited
integrator.
vsfunc.c sfcndemo_vsfunc.mdl IMlustrate how to create a variable
sample time block. This block
implements a variable-step delay in
which the first input is delayed by
an amount of time determined by the
second input.
Fortran S-Function Examples
The following table lists sample Fortran S-functions available in the
matlabroot/toolbox/simulink/simdemos/simfeatures/src folder.
Filename Model Name Description

sfun_timestwo_for.F

sfcndemo_timestwo_for.mdl| Implement a Level-1 Fortran
S-function that represents the
timestwo.c S-function.

sfun_atmos.c
sfun_atmos_sub.F

sfcndemo_atmos.mdl Calculate the 1976 standard
atmosphere to 86 km using a
Fortran subroutine.

simomexf.F

No model available Implement a Level-1 Fortran
S-function that represents the
simomex.c S-function.

vdpmexf.F

No model available Implement a Level-1 Fortran
S-function that represents the
vdpmex.c S-function.

1-29

l Overview of S-Functions

1-30

C++ S-Function Examples

The following table lists sample C++ S-functions available in the
matlabroot/toolbox/simulink/simdemos/simfeatures/src folder.

Filename

Model Name

Description

sfun_counter_cpp.cpp

sfcndemo_counter_cpp.mdl

Store a C++ object in the pointers
vector PWork.

Selecting an S-Function
Implementation

e “Available S-Function Implementations” on page 2-2

e “What Type of S-Function Should You Use?” on page 2-3
e “How to Implement S-Functions” on page 2-5

e “S.-Function Features” on page 2-8

¢ “S-Function Limitations” on page 2-13

e “Example Using S-Functions to Incorporate Legacy C Code” on page 2-15

2 Selecting an S-Function Implementation

Available S-Function Implementations

You can implement your S-function in one of five ways:

A Level-1 MATLAB S-function provides a simple MATLAB interface
to interact with a small portion of the S-function API. Level-2 MATLAB
S-functions supersede Level-1 MATLAB S-functions.

A Level-2 MATLAB S-function provides access to a more extensive set
of the S-function API and supports code generation. In most cases, use a
Level-2 MATLAB S-function when you want to implement your S-function
in MATLAB.

A handwritten C MEX S-function provides the most programming
flexibility. You can implement your algorithm as a C MEX S-function or
write a wrapper S-function to call existing C, C++, or Fortran code. Writing
a new S-function requires knowledge of the S-function API and, if you
want to generate inlined code for the S-function, the Target Language
Compiler (TLC).

The S-Function Builder is a graphical user interface for programming
a subset of S-function functionality. If you are new to writing C MEX
S-functions, you can use the S-Function Builder to generate new
S-functions or incorporate existing C or C++ code without interacting with
the S-function API. The S-Function Builder can also generate TLC files
for inlining your S-function during code generation with the Real-Time
Workshop product.

The Legacy Code Tool is a set of MATLAB commands that helps

you create an S-function to incorporate legacy C or C++ code. Like the
S-Function Builder, the Legacy Code Tool can generate a TLC file to inline
your S-function during code generation. The Legacy Code Tool provides
access to fewer of the methods in the S-function API than the S-Function
Builder or a handwritten C MEX S-function.

The following sections describe the uses, features, and differences of these
S-function implementations. The last section compares using a handwritten
C MEX S-function, the S-Function Builder, and the Legacy Code Tool to
incorporate an existing C function into your Simulink model.

What Type of S-Function Should You Use?

What Type of S-Function Should You Use?

Consider the following questions if you are unclear about what type of
S-function is best for your application.

If you... Then use...

Are a MATLAB programmer with little or | A Level-2 MATLAB S-function, especially if you do

no C programming experience not need to generate code for a model containing the
S-function (see Chapter 3, “Writing S-Functions in
MATLAB”).

Need to generate code for a model Either a Level-2 MATLAB S-function or a C MEX

containing the S-function S-functions. Level-2 MATLAB S-functions require

that you write a Target Language Compiler (TLC)
file for your S-function, before generating code. C
MEX S-functions, however, automatically support
code generation.

Need the simulation to run faster A C MEX S-function, even if you do not need to
generate code (see Chapter 4, “Writing S-Functions
in C”). For complicated systems, Level-2 MATLAB
S-functions simulate slower than C MEX S-functions
because they call out to the MATLAB interpreter.

Need to implement the S-function in C, The S-Function Builder.
but have no previous experience writing
C MEX S-functions

Are incorporating legacy code into the Any S-function, with the exception of a Level-1
model MATLAB S-function. Consider using the Legacy
Code Tool if your legacy function calculates only
outputs, not dynamic states (see “Integrating
Existing C Functions into Simulink Models with
the Legacy Code Tool” on page 4-55). Otherwise,
consider using the S-Function Builder. If you need
to call the legacy code during simulation, do not use
a Level-2 MATLAB S-function because they call
legacy code only through their TLC files.

2-3

2 Selecting an S-Function Implementation

If you...

Then use...

Need to generate embeddable code for an
S-function that incorporates legacy code

The Legacy Code Tool if your legacy function
calculates only outputs. Otherwise, use a
handwritten C MEX S-function or the S-Function
Builder.

How to Implement S-Functions

How to Implement S-Functions

The following table gives an overview of how to write different types of
S-functions. See the associated sections of the S-function documentation for
more details on how to implement S-functions using a particular method.

Note For backward compatibility, the following table and sections contain
information about Level-1 MATLAB S-functions. However, use the Level-2
MATLAB S-function API to develop new MATLAB S-functions.

S-Function Type

Implementation

Level-1 MATLAB
S-function

Use the following template to write a new Level-1 MATLAB S-function:
sfuntmpl.m
See “Maintaining Level-1 MATLAB S-Functions” on page 3-15 for more
information.

Level-2 MATLAB
S-function

1 Use the msfuntmpl basic.m template to write a new Level-2 MATLAB
S-function:

See “Writing Level-2 MATLAB S-Functions” on page 3-4 for more
information.

2 Write a Target Language Compiler (TLC) file for the S-function if
you need to generate code for a model containing the S-function. The
file, msfcn_times_two.tlc in the folder is an example TLC file for
the S-function msfcn_times two.m. See “Inlining MATLAB File
S-Functions” in Real-Time Workshop Target Language Compiler for
information on writing TLC files for Level-2 MATLAB S-functions.

2-5

2 Selecting an S-Function Implementation

S-Function Type

Implementation

Hand-written C
MEX S-function

1 Use the sfuntmpl_doc.c template to write a new C MEX S-function
(see “Example of a Basic C MEX S-Function” on page 4-43) or to write a
wrapper S-function that calls C, C++, or Fortran code.

See “Writing Wrapper S-Functions” in the Real-Time Workshop User’s
Guide for information on writing wrapper S-functions to incorporate
legacy C or C++ code. See “Constructing the Gateway” on page 6-13
for information on writing a wrapper function to incorporate legacy
Fortran code.

2 Compile the S-function using the mex command to obtain an executable
to use during simulation.

3 Write a TLC file for the S-function if you want to inline the code
during code generation (see “Writing Fully Inlined S-Functions with
the mdlRTW Routine” in the Real-Time Workshop User’s Guide and
Real-Time Workshop Target Language Compiler). You do not need a
TLC file if you are not inlining the S-function in the generated code.

S-Function Builder

1 Enter the S-function attributes into the S-Function Builder dialog box
(see “S-Function Builder Dialog Box” on page 4-12).

2 Select the Generate wrapper TLC option to generate a TLC file to
inline the S-function during code generation.

3 Click Build to generate the S-function, TLC file, and an executable file
to use during simulation.

Legacy Code Tool

Use the legacy_ code function to perform the following steps (see
“Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” on page 4-55):

1 Initialize a data structure that describes the S-function attributes in
terms of the legacy function.

lct_spec = legacy_code('initialize');

2 Generate and compile the wrapper S-function.

How to Implement S-Functions

S-Function Type Implementation

legacy_code('sfcn_cmex_generate', lct_spec);
legacy_code('compile', lct_spec);

3 Instantiate an S-Function block that calls the S-function wrapper.

legacy_code('slblock_generate', lct_spec);

4 Generate a TLC file to inline the S-function during code generation.

legacy_code('sfcn_tlc_generate', lct_spec);

2 Selecting an S-Function Implementation

2-8

S-Function Features

The following tables give overviews of the features supported by different

types of S-functions. The first table focuses on handwritten S-functions. The
second table compares the features of S-functions automatically generated by
the S-Function Builder or Legacy Code Tool.

Features of Hand-written S-Functions

Feature Level-1 MATLAB Level-2 MATLAB Handwritten C MEX
S-Function S-Function S-Function
Data types Supports signals with a Supports any data type | Supports any data type
data type of double. supported by Simulink | supported by Simulink
software, including software, including
fixed-point types. fixed-point types.
Numeric Supports only real signals. | Supports real and Supports real and complex
types complex signals. signals.
Frame Does not support Supports framed and Supports framed and
support frame-based signals. unframed signals. unframed signals.
Port Supports vector inputs Supports scalar, 1-D, Supports scalar, 1-D, and
dimensions | and outputs. Does not and multidimensional multidimensional input
support multiple input input and output and output signals.
and output ports. signals.
S-function Supports only Supports a larger set Supports the entire
API mdlInitializeSizes, of the S-function API. S-function API.
mdlDerivatives, See “Level-2 MATLAB
mdlUpdate, md1Outputs, S-Function Callback
md1GetTimeOfNextVarHit,| Methods” on page 3-6
and mdlTerminate. for a list of supported
methods.
Code Does not support code Requires a handwritten | Natively supports code
generation generation. TLC file to generate generation. Requires a
support code. handwritten TLC file

to inline the S-function
during code generation.

S-Function Features

Features of Hand-written S-Functions (Continued)

Feature Level-1 MATLAB Level-2 MATLAB Handwritten C MEX
S-Function S-Function S-Function
Simulink Runs interpretively Provides the option Provides the option to
Accelerator | and is, therefore, not to use a TLC file in use a TLC or MEX file in
mode accelerated. Accelerator mode, Accelerator mode.
instead of running
interpretively.
Model Cannot be used in a Supports Normal and Provides options for
reference referenced model. Accelerator mode sample time inheritance
simulations when used | and Normal mode support
in a referenced model. when used in a referenced
Requires a TLC file for | model.
Accelerator mode.
Simulink. Does not support these Supports Supports all of these
AliasType, | classes. Simulink.NumericType | classes (see “Custom
Simulink. and Data Types” on page
NumericType Simulink.AliasType 8-29). However, supports
and classes (see “Custom Simulink.StructType
Simulink. Data Types” on page only for S-function
StructType 8-29). parameters.
support
Bus input Does not support bus Does not support bus Does not support model
and output | input or output signals. input or output signals. | referencing under
signals all circumstances.

See “Simulink Model
Referencing Limitations”
in Using Simulink for
details.

2-9

2 Selecting an S-Function Implementation

Features of Hand-written S-Functions (Continued)

Feature

Level-1 MATLAB
S-Function

Level-2 MATLAB
S-Function

Handwritten C MEX
S-Function

Tunable and

Supports tunable

Supports tunable and

Supports tunable and

run-time parameters during run-time parameters. run-time parameters.
parameters | simulation. Does

not support run-time

parameters.
Work Does not support work Supports DWork vectors | Supports all work vector
vectors vectors. (see “Using DWork types (see Chapter 7,

Vectors in Level-2

on page 7-12).

MATLAB S-Functions”

“Using Work Vectors”).

Features of Automatically Generated S-Functions

Feature

S-Function Builder

Legacy Code Tool

Data types

Supports any data type supported
by Simulink software, including
fixed-point types.

Supports all built-in data types.
To use a fixed-point data type,
you must specify the data type as
a Simulink.NumericType. You
cannot use a fixed-point type
with unspecified scaling.

Numeric types

Supports real and complex
signals.

Supports complex signals only
for built-in data types.

Frame support

Supports framed and unframed
signals.

Does not support frame-based
signals.

Port dimensions

Supports scalar, 1-D, and
multidimensional input and
output signals.

Supports scalar, 1-D, and
multidimensional input and
output signals.

2-10

S-Function Features

Features of Automatically Generated S-Functions (Continued)

Feature

S-Function Builder

Legacy Code Tool

S-function API

Supports creation of custom
mdlInitializeSizes,
mdlInitializeSampleTimes,
mdlDerivative, mdlUpdate,
and md1Output. Also allows
for automatic generation of
mdlStart and mdlTerminate.

Supports mdlInitializeSizes,
mdlInitializeSampleTimes,
mdlStart,
mdlInitializeConditions,
md1lOutputs, and mdlTerminate.

Code generation support

Natively supports code
generation. Also, automatically
generates a TLC file for inlining
the S-function during code
generation.

Natively supports code
generation optimized for
embedded systems. Also,
automatically generates a TLC
file that supports expression
folding for inlining the S-function
during code generation.

Simulink® Accelerator™
mode

Uses a TLC file in Accelerator
mode, if the file was generated.
Otherwise, uses the MEX file.

Provides the option to use a TLC
or MEX file in Accelerator mode.

Model reference

Uses default behaviors when
used in a referenced model.

Uses default behaviors when
used in a referenced model.

Simulink.AliasType,
Simulink.NumericType,
and
Simulink.StructType

Does not support these classes.

Supports Simulink.AliasType
and Simulink.NumericType.

Bus input and output
signals

Does not support bus input or
output signals.

Supports bus input and output
signals. You must define a
Simulink.Bus object in the
MATLAB workspace that is
equivalent to the structure of
the input or output used in the
legacy code. Does not support
bus parameters.

2-11

2 Selecting an S-Function Implementation

2-12

Features of Automatically Generated S-Functions (Continued)

Feature

S-Function Builder

Legacy Code Tool

Tunable and run-time
parameters

Supports tunable parameters
only during simulation. Supports
run-time parameters.

Supports tunable and run-time
parameters.

Work vectors

Does not provide access to work
vectors.

Supports DWork vectors

with the usage type
SS_DWORK_USED_AS_DWORK.

See “Types of DWork Vectors” on
page 7-5 for a discussion on the
different DWork vector usage

types.

S-Function Limitations

S-Function Limitations

The following table summarizes the major limitations of the different types of
S-functions.

Implementation Limitations
Level-1 MATLAB Does not support the majority of S-function features. See the
S-function “S-Function Features” on page 2-8 section for information on what

features a Level-1 MATLAB S-function does support.

Level-2 MATLAB
S-functions

® Does not support bus input and output signals.

e Cannot incorporate legacy code during simulation, only during code
generation through a TLC file.

Handwritten C MEX
S-function

Does not support model referencing under all circumstances. See
“Simulink Model Referencing Limitations” in Using Simulink for
details.

S-Function Builder

® Generates S-function code using a wrapper function which incurs
additional overhead.

® Does not support the following S-function features:

Work vectors

Port-based sample times

Multiple sample times or a nonzero offset time

Dynamically-sized input and output signals for an S-function
with multiple input and output ports

Note S-functions with one input and one output port can have
dynamically-sized signals

Legacy Code Tool

® Generates C MEX S-functions for existing functions written in C or
C++ only. The tool does not support transformation of MATLAB or
Fortran functions.

¢ Can interface with C++ functions, but not C++ objects.

® Does not support simulating continuous or discrete states.

2-13

2 Selecting an S-Function Implementation

2-14

Implementation

Limitations

® Does not support use of function pointers as the output of the legacy
function being called.

® Always sets the S-function’s flag for direct feedthrough
(sizes.DirFeedthrough) to true.

® Supports only the continuous, but fixed in minor time step, sample
time and offset option.

® Supports complex numbers, but only with Simulink built-in data
types.

® Does not support the following S-function features:
= Work vectors, other then general DWork vectors
= Frame-based input and output signals
= Port-based sample times

= Multiple block-based sample times

Example Using S-Functions to Incorporate Legacy C Code

Example Using S-Functions to Incorporate Legacy C Code

In this section...

“Overview” on page 2-15

“Using a Hand-Written S-Function to Incorporate Legacy Code” on page
2-16

“Using the S-Function Builder to Incorporate Legacy Code” on page 2-18

“Using the Legacy Code Tool to Incorporate Legacy Code” on page 2-23

Overview

C MEX S-functions allow you to call existing C code within your Simulink
models. For example, consider the simple C function doubleIt.c that outputs
a value two times the value of the function input.

double doublelIt(double u)
{
return(u * 2.0);

}
You can create an S-function that calls doubleIt.c by either:

® Writing a wrapper S-function. Using this method, you hand write a new
C S-function and associated TLC file. This method requires the most
knowledge about the structure of a C S-function.

¢ Using an S-Function Builder block. Using this method, you enter the
characteristics of the S-function into a block dialog. This method does
not require any knowledge about writing S-functions. However, a basic
understanding of the structure of an S-function can make the S-Function
Builder dialog box easier to use.

¢ Using the Legacy Code Tool. Using this command line method, you define
the characteristics of your S-function in a data structure in the MATLAB
workspace. This method requires the least amount of knowledge about
S-functions.

The following sections describe how to create S-functions for use in a Simulink
simulation and with Real-Time Workshop code generation, using the previous

2-15

2 Selecting an S-Function Implementation

three methods. The model sfcndemo_choosing_sfun.mdl contains blocks
that use these S-functions. Copy this model and the files doubleIt.c and
doublelIt.h from the folder docroot/toolbox/simulink/sfg/examples into
your working folder if you plan to step through the examples.

ﬁU in huilder_wrapsfcn out! ——
I
S-Function Builder »

Click Build button

+— double yl = wrapfcnidouble ut)

legacy_timestivo
run "Ict_wwrapston”

L lwrapsfin

S-Function
run "mex wrapsfon.c doublet .o

Using a Hand-Written S-Function to Incorporate
Legacy Code

The S-function wrapsfcn.c calls the legacy function doublelIt.c in its
md1lOutputs method. Save the wrapsfcn.c file into your working folder, if
you are planning to compile the S-function to run in the example model
sfcndemo_choosing_sfun.mdl.

To incorporate the legacy code into the S-function, wrapsfcn.c begins by
declaring doubleIt.c with the following line:

extern real_T doublelIt(real_T u);

Once declared, the S-function can use doublelIt.c in its md1Outputs method.
For example:

/* Function: mdlOutputs

2-16

Example Using S-Functions to Incorporate Legacy C Code

* Abstract:
* Calls the doubleIt.c function to multiple the input by 2.
*/

static void mdlOutputs(SimStruct *S, int tid){
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
ssGetOutputPortRealSignal(S,0);

real T *y

*y = doubleIt(*uPtrs[0]);

To compile the wrapsfcn.c S-function, run the following mex command. Make
sure that the doubleIt.c file is in your working folder.

mex wrapsfcn.c doublelt.c

To generate code for the S-function using the Real-Time Workshop code
generator, you need to write a Target Language Compiler (TLC) file. The
following TLC file wrapsfcn.tlc uses the BlockTypeSetup function to
declare a function prototype for doubleIt.c. The TLC file’s Outputs function
then tells the Real-Time Workshop code generator how to inline the call to
doublelIt.c. For example:

%simplements "wrapsfcn" "C"

o0
o0

File : wrapsfcn.tlc
Abstract:
Example tlc file for S-function wrapsfcn.c

o o
P

o0
o0

o0
o0

Function: BlockTypeSetup =
Abstract:

Create function prototype in model.h as:

"extern double doubleIt(double u);"

® o o
® o o°

o0
o0

%sfunction BlockTypeSetup(block, system) void
sopenfile buffer

%% PROVIDE ONE LINE OF CODE AS A FUNCTION PROTOTYPE
extern double doubleIt(double u);

%closefile buffer

2-17

2 Selecting an S-Function Implementation

2-18

%<LibCacheFunctionPrototype(buffer)>
%%endfunction %% BlockTypeSetup

of

% Function: Outputs == =
% Abstract:
CALL LEGACY FUNCTION: y = doubleIt(u);

® o
o°

o°
o°

sfunction Outputs(block, system) Output
/* %<Type> Block: %<Name> */

%assign u = LibBlockInputSignal(o, "", "", 0)
%assign y = LibBlockOutputSignal(o, "", "", 0)

%% PROVIDE THE CALLING STATEMENT FOR "doubleIt"
%<y> = doubleIt(%<u>);

%sendfunction %% Outputs

See Real-Time Workshop Target Language Compiler for more information
on writing TLC files.

Using the S-Function Builder to Incorporate Legacy
Code

The S-Function Builder automates the creation of S-functions and TLC files
that incorporate legacy code. For this example, in addition to doublelIt.c,
you need the header file doubleIt.h that declares the doubleIt.c function
format, as follows:

extern real_T doublelIt(real T int);

The S-Function Builder block in sfcndemo_choosing sfun.mdl shows how
to configure the block dialog to call the legacy function doubleIt.c. In the
S-Function Builder block dialog:

¢ The S-function name field in the Parameters pane defines the name
builder_ wrapsfcn for the generated S-function.

Example Using S-Functions to Incorporate Legacy C Code

¢ The Data Properties pane names the input and output ports as in1 and
out1, respectively.

¢ The Libraries pane provides the interface to the legacy code.

= The Library/Object/Source files field contains the source file name
doublelt.c.

= The Includes field contains the following line to include the header file
that declares the legacy function:

#include <doubleIt.h>
¢ The Outputs pane calls the legacy function with the lines:

/* Call function that multiplies the input by 2 */
*out1 = doubleIt(*int);
¢ The Build Info pane selects the Generate wrapper TLC option.

When you click Build, the S-Function Builder generates three files.

File Name Description

builder_wrapsfcn.c The main S-function.

builder_wrapsfcn_wrapper.c | A wrapper file containing separate
functions for the code entered in the
Outputs, Continuous Derivatives,
and Discrete Updates panes of the
S-Function Builder.

builder_wrapsfcn.tlc The S-function’s TLC file.

The builder_wrapsfcn.c file follows a standard format:

¢ The file begins with a set of #define statements that incorporate the
information from the S-Function Builder. For example, the following lines
define the first input port:

#define NUM_INPUTS 1
/* Input Port 0 */
#define IN_PORT_O_NAME in1

2-19

2 Selecting an S-Function Implementation

#define INPUT_O_WIDTH 1

#define INPUT_DIMS_O_COL 1

#define INPUT_O_DTYPE real T
#define INPUT_O_COMPLEX COMPLEX_NO
#define IN_O_FRAME_BASED FRAME_NO
#define IN_O_DIMS 1-D

#define INPUT_O_FEEDTHROUGH 1

e Next, the file declares all the wrapper functions found in the
builder_wrapsfcn_wrapper.c file. This example requires only a wrapper
function for the Outputs code.

extern void builder_wrapsfcn_Outputs_wrapper(const real T *inf,
real T *out1);

¢ Following these definitions and declarations, the file contains the
S-function methods, such as mdlInitializeSizes, that initialize the
S-function’s input ports, output ports, and parameters. See “Process View’
on page 4-77 for a list of methods that are called during the S-function
initialization phase.

4

¢ The file md10utputs method calls the builder_wrapsfcn_wrapper.c
function. The method uses the input and output names in1 and out1, as
defined in the Data Properties pane, when calling the wrapper function.
For example:

/* Function: mdlOutputs
*
*/
static void mdlOutputs(SimStruct *S, int_T tid)

{
const real_T *inl = (const real_T*) ssGetInputPortSignal(S,0);
real T *out1 = (real_T *)ssGetOutputPortRealSignal(S,0);
builder_wrapsfcn_Outputs_wrapper(ini, outl);

}

® The file builder_wrapsfcn.c concludes with the required md1Terminate
method.

The wrapper function builder_wrapsfcn_wrapper.c has three parts:

2-20

Example Using S-Functions to Incorporate Legacy C Code

® The Include Files section includes the doublelIt.h file, along with the
standard S-function header files:

/*
* Include Files
*
*/
#if defined (MATLAB_MEX_FILE)
#include "tmwtypes.h"
#include "simstruc_types.h"
#else
#include "rtwtypes.h"
#endif
/* %%%-SFUNWIZ_wrapper_includes_Changes_BEGIN --- EDIT HERE TO _END */
#include <math.h>
#include <doubleIt.h>
/* %%%-SFUNWIZ_wrapper_includes_Changes_END --- EDIT HERE TO _BEGIN */

e The External References section contains information from the External
reference declarations field on the Libraries pane. This example does
not use this section.

® The Output functions section declares the function
builder_wrapfcn_Outputs_wrapper, which contains the code
entered in the S-Function Builder block dialog’s Outputs pane:

/*
* Qutput functions
*
*/
void builder_wrapfcn_Outputs_wrapper(const real T *init,
real_T *outl)
{
/* %%%-SFUNWIZ_wrapper_Outputs_Changes_BEGIN --- EDIT HERE TO _END */
/* Call function that multiplies the input by 2 */

*outl = doubleIt(*int);

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_END --- EDIT HERE TO _BEGIN */
}

2-21

2 Selecting an S-Function Implementation

2-22

Note Compared to a handwritten S-function, the S-Function Builder places
the call to the legacy C function down an additional level through the wrapper
file builder_wrapsfcn_wrapper.c.

The TLC file builder_wrapsfcn.tlc generated by the S-Function Builder
1s similar to the previous handwritten version. The file declares the legacy
function in BlockTypeSetup and calls it in the Outputs method

%implements builder_wrapsfcn "C"
% Function: BlockTypeSetup ====================================

o o
o°

P
o°

Purpose:
Set up external references for wrapper functions in the

o
o°

o
o°

generated code.

o
o°

%function BlockTypeSetup(block, system) Output
%sopenfile externs

extern void builder_wrapsfcn_Outputs_wrapper(const real T *inf,
real T *out1);

%closefile externs

%<LibCacheExtern(externs)>

%endfunction

o

% Function: Outputs =========

o
o°

o
o°

Purpose:
Code generation rules for mdlOutputs function.

o
o°

o
o°

%function Outputs(block, system) Output
/* S-Function "builder_wrapsfcn_wrapper" Block: %<Name> */

%assign pu0 = LibBlockInputSignalAddr(0, "", "", 0)
%assign py0 = LibBlockOutputSignalAddr(0, "", "", 0)
%assign py_width = LibBlockOutputSignalWidth(0)
%assign pu_width = LibBlockInputSignalWidth(0)
builder_wrapsfcn_Outputs_wrapper (%<pu0>, %<py0>);

Example Using S-Functions to Incorporate Legacy C Code

X3
%

%sendfunction

Using the Legacy Code Tool to Incorporate Legacy
Code

The section “Example of Integrating Existing C Functions into Simulink
Models with the Legacy Code Tool” on page 4-58 in “Writing S-Functions

in C” shows how to use the Legacy Code Tool to create an S-function that
incorporates doubleIt.c. For a script that performs the steps in that
example, copy the file 1ct_wrapsfcn.m to your working folder. Make sure
that the doublelIt.c and doublelt.h files are in your working folder then run
the script by typing 1lct_wrapsfcn at the MATLAB command prompt. The
script creates and compiles the S-function legacy wrapsfcn.c and creates
the TLC file legacy wrapsfcn.tlc via the following commands.

% Create the data structure
def = legacy_code('initialize');

% Populate the data struture

def.SourceFiles = {'doublelt.c'};

def.HeaderFiles = {'doublelIt.h'};

def.SFunctionName = 'legacy_wrapsfcn';
def.OutputFcnSpec = 'double y1 = doubleIt(double ut)';
def.SampleTime = [-1,0];

% Generate the S-function
legacy_code('sfcn_cmex_generate', def);

% Compile the MEX-file
legacy_code('compile', def);

% Generate a TLC-file
legacy_code('sfcn_tlc_generate', def);

The S-function legacy wrapsfcn.c generated by the Legacy Code Tool
begins by including the doubleIt.h header file. The md1Outputs method then
directly calls the doubleIt.c function, as follows:

static void mdlOutputs(SimStruct *S, int_T tid)

2-23

2 Selecting an S-Function Implementation

2-24

/*

* Get access to Parameter/Input/Output/DWork/size information
*/

real T *ul = (real_T *) ssGetInputPortSignal(S, 0);

real T *y1 = (real_T *) ssGetOutputPortSignal(S, 0);

/*

* Call the legacy code function
*/

*y1 = doubleIt(*ul);

The S-function generated by the Legacy Code Tool differs from the S-function
generated by the S-Function Builder as follows:

The S-function generated by the S-Function Builder calls the legacy function
doublelIt.c through the wrapper function builder_wrapsfcn_wrapper.c.
The S-function generated by the Legacy Code Tool directly calls doubleIt.c
from its md1Outputs method.

The S-Function Builder uses the input and output names entered into
the Data Properties pane, allowing you to customize these names in the
S-function. The Legacy Code Tool uses the default names y and u for the
outputs and inputs, respectively. You cannot specify customized names to
use in the generated S-function when using the Legacy Code Tool.

The S-Function Builder and Legacy Code Tool both specify an inherited
sample time, by default. However, the S-Function Builder uses an offset
time of 0.0 while the Legacy Code Tool specifies that the offset time is
fixed in minor time steps.

The TLC file legacy wrapsfcn.tlc supports expression folding by defining
BlockInstanceSetup and BlockOutputSignal functions. The TLC file also
contains a BlockTypeSetup function to declare a function prototype for
doubleIt.c and an Outputs function to tell the Real-Time Workshop code
generator how to inline the call to doubleIt.c.:

%% Function: BlockTypeSetup

o°
o°

sfunction BlockTypeSetup(block, system) void

Example Using S-Functions to Incorporate Legacy C Code

o°
o°

%% The Target Language must be C
sif ::GenCPP==
%<LibReportFatalError("This S-Function generated by the Legacy Code Tool

0

must be only used with the C Target Language")>
%sendif
%<LibAddToCommonIncludes("doubleIt.h")>
%<LibAddToModelSources("doubleIt")>
%%

%sendfunction

o°

% Function: BlockInstanceSetup

o
o°

o°

function BlockInstanceSetup(block, system) void

%

o°

%<LibBlockSetIsExpressionCompliant(block)>

o
o°

%sendfunction

%% Function: Outputs ==

o
o°

sfunction Outputs(block, system) Output

%

o°

%if !LibBlockOutputSignalIsExpr(0)
%assign ul_val = LibBlockInputSignal(o, "", "", 0)
%assign y1_val = LibBlockOutputSignal(o, "", "", 0)
%%

%<y1_val = doubleIt(%<uil_val>);
%sendif

%sendfunction

%% Function: BlockOutputSignal

o°
o°

of°

function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void

%

o

%assign ul_val = LibBlockInputSignal(o, "", "", 0)
%assign y1_val = LibBlockOutputSignal(o, "", "", 0)

LX)
66

%sswitch retType

Selecting an S-Function Implementation

2-26

%case "Signal"
%if portIdx ==
%sreturn "doubleIt(%<ul_val>)"

%selse
%assign errTxt = "Block output port index not supported:
%sendif
%sdefault
%assign errTxt = "Unsupported return type: %<retType>"

%<LibBlockReportError(block,errTxt)>
sendswitch

s<portIdx>"

Writing S-Functions in
MATLAB

® “Introduction” on page 3-2
e “Writing Level-2 MATLAB S-Functions” on page 3-4
e “Maintaining Level-1 MATLAB S-Functions” on page 3-15

3 Writing S-Functions in MATLAB

3-2

Introduction

You can create custom blocks whose properties and behaviors are defined
by MATLAB functions called MATLAB S-functions. The Level-2 MATLAB
S-function application programming interface (API) allows you to create
blocks that have many of the features and capabilities of Simulink built-in
blocks, including:

e Multiple input and output ports

e 1-D, 2-D, and n-D input and output signals

e All data types supported by the Simulink software

® Real or complex signals

¢ Frame-based signals

e Multiple sample rates

e User-defined data and work vectors

® Tunable and run-time parameters

Note Level-2 MATLAB S-functions do not support zero-crossing detection.

For information on how to write a Level-2 MATLAB S-functions, see “Writing
Level-2 MATLAB S-Functions” on page 3-4.

You can generate code for Level-2 MATLAB S-functions if they are inlined.
See “Inlining S-Functions” in the Real-Time Workshop Target Language
Compiler documentation for more information.

Introduction

Note This version of the Simulink software also supports a predecessor
API known as the Level-1 MATLAB S-function. This ensures that you can
simulate models developed with earlier releases that use Level-1 MATLAB
S-functions in their S-Function blocks (see “Maintaining Level-1 MATLAB
S-Functions” on page 3-15). Level-1 MATLAB S-functions support a much
smaller subset of the S-function API then Level-2 MATLAB S-functions, and
their features are limited compared to built-in blocks. Use the Level-2 API,
not the Level-1 API, to develop new MATLAB S-functions.

3-3

3 Writing S-Functions in MATLAB

3-4

Writing Level-2 MATLAB S-Functions

In this section...
“About Level-2 MATLAB S-Functions” on page 3-4

“About Run-Time Objects” on page 3-5

“Level-2 MALTAB S-Function Template” on page 3-5

“Level-2 MATLAB S-Function Callback Methods” on page 3-6
“Using the setup Method” on page 3-8

“Example of Writing a Level-2 MATLAB S-Function” on page 3-8
“Instantiating a Level-2 MATLAB S-Function” on page 3-12
“Operations for Variable-Size Signals” on page 3-12

“Generating Code from a Level-2 MATLAB S-Function” on page 3-13
“MATLAB S-Function Demos” on page 3-14

About Level-2 MATLAB S-Functions

The Level-2 MATLAB S-function API allows you to use the MATLAB language
to create custom blocks with multiple input and output ports and capable of
handling any type of signal produced by a Simulink model, including matrix
and frame signals of any data type. The Level-2 MATLAB S-function API
corresponds closely to the API for creating C MEX S-functions. Much of the
documentation for creating C MEX S-functions (see Chapter 4, “Writing
S-Functions in C” and Chapter 8, “Implementing Block Features”) applies also
to Level-2 MATLAB S-functions. To avoid duplication, this section focuses on
providing information that is specific to writing Level-2 MATLAB S-functions.

A Level-2 MATLAB S-function is MATLAB function that defines the
properties and behavior of an instance of a Level-2 MATLAB S-Function block
that references the MATLAB function in a Simulink model. The MATLAB
function itself comprises a set of callback methods (see “Level-2 MATLAB
S-Function Callback Methods” on page 3-6) that the Simulink engine invokes
when updating or simulating the model. The callback methods perform the
actual work of initializing and computing the outputs of the block defined

by the S-function.

Writing Level-2 MATLAB S-Functions

To facilitate these tasks, the engine passes a run-time object to the callback
methods as an argument. The run-time object effectively serves as a MATLAB
proxy for the S-Function block, allowing the callback methods to set and
access the block properties during simulation or model updating.

About Run-Time Obijects

When the Simulink engine invokes a Level-2 MATLAB S-function callback
method, it passes an instance of the Simulink.MSFcnRunTimeBlock class to
the method as an argument. This instance, known as the run-time object
for the S-Function block, serves the same purpose for Level-2 MATLAB
S-function callback methods as the SimStruct structure serves for C MEX
S-function callback methods. The object enables the method to provide and
obtain information about various elements of the block ports, parameters,
states, and work vectors. The method does this by getting or setting properties
or invoking methods of the block run-time object. See the documentation
for the Simulink.MSFcnRunTimeBlock class for information on getting and
setting run-time object properties and invoking run-time object methods.

Run-time objects do not support MATLAB sparse matrices. For example,
if the variable block is a run-time object, the following line in a Level-2

MATLAB S-function produces an error:

block.Outport(1).Data = speye(10);

where the speye command forms a sparse identity matrix.

Note Other MATLAB programs besides MATLAB S-functions can use
run-time objects to obtain information about a MATLAB S-function in a model
that is simulating. See “Accessing Block Data During Simulation” in Using
Simulink for more information.

Level-2 MALTAB S-Function Template

Use the basic Level-2 MATLAB S-function template msfuntmpl _basic.m to
get a head start on creating a new Level-2 MATLAB S-function. The template
contains skeleton implementation of the required callback methods defined by
the Level-2 MATLAB S-function API. To write a more complicated S-function,
use the annotated template msfuntmpl.m.

3 Writing S-Functions in MATLAB

3-6

To create a MATLAB S-function, make a copy of the template and edit the
copy as necessary to reflect the desired behavior of the S-function you are
creating. The following two sections describe the contents of the MATLAB
code template. The section “Example of Writing a Level-2 MATLAB
S-Function” on page 3-8 describes how to write a Level-2 MATLAB S-function
that models a unit delay.

Level-2 MATLAB S-Function Callback Methods

The Level-2 MATLAB S-function API defines the signatures and general
purposes of the callback methods that constitute a Level-2 MATLAB
S-function. The S-function itself provides the implementations of these
callback methods. The implementations in turn determine the block
attributes (e.g., ports, parameters, and states) and behavior (e.g., the block
outputs as a function of time and the block inputs, states, and parameters). By
creating an S-function with an appropriate set of callback methods, you can
define a block type that meets the specific requirements of your application.

A Level-2 MATLAB S-function must include the following callback methods:

® A setup function to initialize the basic S-function characteristics

® An Outputs function to calculate the S-function outputs

Your S-function can contain other methods, depending on the requirements
of the block that the S-function defines. The methods defined by the Level-2
MATLAB S-function API generally correspond to similarly named methods
defined by the C MEX S-function API. For information on when these methods
are called during simulation, see “Process View” on page 4-77 in “How the
Simulink Engine Interacts with C S-Functions” on page 4-77. For instructions
on how to implement each callback method, see Chapter 9, “S-Function
Callback Methods — Alphabetical List”.

The following table lists all the Level-2 MATLAB S-function callback methods
and their C MEX counterparts.

Writing Level-2 MATLAB S-Functions

Level-2 MATLAB Method

Equivalent C MEX Method

setup (see “Using the setup mdlInitializeSizes
Method” on page 3-8)

CheckParameters mdlCheckParameters
Derivatives mdlDerivatives
Disable mdlDisable

Enable mdlEnable
InitializeCondition mdlInitializeConditions
Outputs md1lOutputs
PostPropagationSetup md1lSetWorkWidths
ProcessParameters mdlProcessParameters
Projection mdlProjection

SetInputPortComplexSignal

mdlSetInputPortComplexSignal

SetInputPortDataType

mdlSetInputPortDataType

SetInputPortDimensions

mdlSetInputPortDimensionInfo

SetInputPortDimensionsModeFcn

mdlSetInputPortDimensionsModeFcn

SetInputPortSampleTime

mdlSetInputPortSampleTime

SetInputPortSamplingMode

mdlSetInputPortFrameData

SetOutputPortComplexSignal

mdlSetOutputPortComplexSignal

SetOutputPortDataType

md1lSetOutputPortDataType

SetOutputPortDimensions

md1lSetOQutputPortDimensionInfo

SetOutputPortSampleTime

md1lSetOutputPortSampleTime

SimStatusChange mdlSimStatusChange
Start mdlStart

Terminate mdlTerminate
Update mdlUpdate
WriteRTW md1RTW

3 Writing S-Functions in MATLAB

Using the setup Method

The body of the setup method in a Level-2 MATLAB S-function initializes
the instance of the corresponding Level-2 MATLAB S-Function block. In
this respect, the setup method is similar to the mdlInitializeSizes and
mdlInitializeSampleTimes callback methods implemented by C MEX
S-functions. The setup method performs the following tasks:

Initializing the number of input and output ports of the block.

Setting attributes such as dimensions, data types, complexity, and sample
times for these ports.

Specifying the block sample time. See “How to Specify the Sample Time” in
Using Simulink for more information on how to specify valid sample times.

Setting the number of S-function dialog parameters.

Registering S-function callback methods by passing the handles of local
functions in the MATLAB S-function to the RegBlockMethod method
of the S-Function block’s run-time object. See the documentation

for Simulink.MSFcnRunTimeBlock for information on using the
RegBlockMethod method.

Example of Writing a Level-2 MATLAB S-Function

The following steps illustrate how to write a simple Level-2 MATLAB
S-function. When applicable, the steps include examples from the S-function
demo msfcn_unit _delay.m used in the model msfcndemo_sfundsc2.mdl. All
lines of code use the variable name block for the S-function run-time object.

1 Copy the Level-2 MATLAB S-function template msfuntmpl _basic.m to

your working folder. If you change the file name when you copy the file,
change the function name in the function line to the same name.

2 Modify the setup method to initialize the S-function’s attributes. For this

example:

¢ Set the run-time object’s NumInputPorts and NumOutputPorts properties
to 1 in order to initialize one input port and one output port.

¢ Invoke the run-time object’s SetPreCompInpPortInfoToDynamic and
SetPreCompOutPortInfoToDynamic methods to indicate that the

Writing Level-2 MATLAB S-Functions

input and output ports inherit their compiled properties (dimensions,
data type, complexity, and sampling mode) from the model.

e Set the DirectFeedthrough property of the run-time object’s InputPort
to false in order to indicate the input port does not have direct
feedthrough. Retain the default values for all other input and output
port properties that are set in your copy of the template file. The values
set for the Dimensions, DatatypelID, and Complexity properties override
the values inherited using the SetPreCompInpPortInfoToDynamic and
SetPreCompOutPortInfoToDynamic methods.

® Set the run-time object’s NumDialogPrms property to 1 in order to
initialize one S-function dialog parameter.

® Specify that the S-function has an inherited sample time by setting the
value of the runtime object’s SampleTimes property to [-1 0].

e (Call the run-time object’s RegBlockMethod method to register the
following four callback methods used in this S-function.

PostPropagationSetup

InitializeConditions

OQutputs

= Update

Remove any other registered callback methods from your copy of the
template file. In the calls to RegBlockMethod, the first input argument is
the name of the S-function API method and the second input argument
1s the function handle to the associated local function in the MATLAB
S-function.

The following setup method from msfcn_unit_delay.m performs the
previous list of steps:

function setup(block)

%% Register a single dialog parameter
block.NumDialogPrms = 1;

%% Register number of input and output ports

block.NumInputPorts = 1;
block.NumOutputPorts = 1;

3-9

3 Writing S-Functions in MATLAB

%% Setup functional port properties to dynamically
%% inherited.
block.SetPreCompInpPortInfoToDynamic;
block.SetPreCompOutPortInfoToDynamic;

%% Hard-code certain port properties
block.InputPort(1).Dimensions =1,
block.InputPort(1).DirectFeedthrough

1}
—+
QO
[
w
9]

block.OutputPort(1).Dimensions =1;

%% Set block sample time to inherited
block.SampleTimes = [-1 0];

%% Register methods
block.RegBlockMethod('PostPropagationSetup',@oPostPropSetup);
block.RegBlockMethod('InitializeConditions',@InitConditions);
block.RegBlockMethod('Outputs’', @Output);
block.RegBlockMethod('Update’, @Update);

If your S-function needs continuous states, initialize the number of
continuous states in the setup method using the run-time object’s
NumContStates property. Do not initialize discrete states in the setup
method.

3 Initialize the discrete states in the PostPropagationSetup method. A
Level-2 MATLAB S-function stores discrete state information in a DWork
vector. The default PostPropagationSetup method in the template file
suffices for this example.

The following PostPropagationSetup method from msfcn_unit delay.m,
named DoPostPropSetup, initializes one DWork vector with the name x0.

function DoPostPropSetup(block)

%% Setup Dwork
block.NumDworks = 1;
block.Dwork(1).Name = 'x0';
block.Dwork(1).Dimensions =1;
block.Dwork(1).DatatypeID

1]
o

3-10

Writing Level-2 MATLAB S-Functions

block.Dwork(1).Complexity
block.Dwork(1).UsedAsDiscState

'Real’;
true;

If your S-function uses additional DWork vectors, initialize them in the
PostPropagationSetup method, as well (see “Using DWork Vectors in
Level-2 MATLAB S-Functions” on page 7-12).

4 Initialize the values of discrete and continuous states or other DWork
vectors in the InitializeConditions or Start callback methods. Use the
Start callback method for values that are initialized once at the beginning
of the simulation. Use the InitializeConditions method for values
that need to be reinitialized whenever an enabled subsystem containing
the S-function is reenabled.

For this example, use the InitializeConditions method to set the
discrete state’s initial condition to the value of the S-function’s dialog
parameter. For example, the InitializeConditions method in
msfcn_unit_delay.m is:

function InitConditions(block)

%% Initialize Dwork
block.Dwork(1).Data = block.DialogPrm(1).Data;

For S-functions with continuous states, use the ContStates run-time object
method to initialize the continuous state date. For example:

block.ContStates.Data(1) = 1.0;

5 Calculate the S-function’s outputs in the Outputs callback method. For
this example, set the output to the current value of the discrete state stored
in the DWork vector.

The Outputs method in msfcn_unit_delay.mis:

function Output(block)
block.OutputPort(1).Data = block.Dwork(1).Data;

6 For an S-function with continuous states, calculate the state derivatives in
the Derivatives callback method. Run-time objects store derivative data

3-11

3 Writing S-Functions in MATLAB

3-12

in their Derivatives property. For example, the following line sets the
first state derivative equal to the value of the first input signal.

block.Derivatives(1).Data = block.InputPort(1).Data;

This example does not use continuous states and, therefore, does not
implement the Derivatives callback method.

7 Update any discrete states in the Update callback method. For this
example, set the value of the discrete state to the current value of the first
input signal.

The Update method in msfcn_unit_delay.mis

function Update(block)
block.Dwork(1).Data = block.InputPort(1).Data;

8 Perform any cleanup, such as clearing variables or memory, in the
Terminate method. Unlike C MEX S-functions, Level-2 MATLAB
S-function are not required to have a Terminate method.

For information on additional callback methods, see “Level-2 MATLAB
S-Function Callback Methods” on page 3-6. For a list of run-time object
properties, see the reference page for Simulink.MSFcnRunTimeBlock and the
parent class Simulink.RunTimeBlock.

Instantiating a Level-2 MATLAB S-Function

To use a Level-2 MATLAB S-function in a model, copy an instance of

the Level-2 MATLAB S-Functionblock into the model. Open the Block
Parameters dialog box for the block and enter the name of the MATLAB file
that implements your S-function into the S-function name field. If your
S-function uses any additional parameters, enter the parameter values as a
comma-separated list in the Block Parameters dialog box Parameters field.

Operations for Variable-Size Signals

Following are modifications to the Level-2 MATLAB S-functions template
(msfuntmpl basic.m) and additional operations that allow you to use
variable-size signals.

Writing Level-2 MATLAB S-Functions

function setup(block)
% Register the properties of the output port
block.OutputPort(1).DimensionsMode = 'Variable';

block.RegBlockMethod('SetInputPortDimensionsMode', @SetInputDimsMode);

function DoPostPropSetup(block)

%Register dependency rules to update current output size of output port a depending on
%input ports b and c

block.AddOutputDimsDependencyRules(a, [b c], @setOutputVarDims);

%Configure output port b to have the same dimensions as input port a
block.InputPortSameDimsAsOutputPort(a,b);

%Configure DWork a to have its size reset when input size changes.

block.DWorkRequireResetForSignalSize(a,true);

function SetInputDimsMode (block, port, dm)
% Set dimension mode
block.InputPort(port).DimensionsMode = dm;

block.OutputPort(port).DimensionsMode = dm;

function setOutputVarDims(block, opIdx, inputIdx)
% Set current (run-time) dimensions of the output
outDimsAfterReset = block.InputPort(inputIdx(1)).CurrentDimensions;

block.OutputPort(opIdx).CurrentDimensions = outDimsAfterReset;

Generating Code from a Level-2 MATLAB S-Function

Generating code for a model containing a Level-2 MATLAB S-function
requires that you provide a corresponding Target Language Compiler (TLC)
file. You do not need a TLC file to accelerate a model containing a Level-2
MATLAB S-function. The Simulink Accelerator software runs Level-2
MATLAB S-functions in interpreted mode. See “Inlining S-Functions”in the
Real-Time Workshop Target Language Compiler for more information on
writing TLC files for MATLAB S-functions.

3-13

3 Writing S-Functions in MATLAB

MATLAB S-Function Demos

The Level-2 MATLAB S-function demos provide a set of self-documenting
models that illustrate the use of Level-2 MATLAB S-functions. Enter
sfundemos at the MATLAB command prompt to view the demos.

3-14

Maintaining Level-1 MATLAB S-Functions

Maintaining Level-1 MATLAB S-Functions

In this section...

“About the Maintenance of Level-1 MATLAB S-Functions” on page 3-15
“Level-1 MATLAB S-Function Arguments” on page 3-16

“Level-1 MATLAB S-Function Outputs” on page 3-17

“Defining S-Function Block Characteristics” on page 3-18
“Processing S-Function Parameters” on page 3-19

“Converting Level-1 MATLAB S-Functions to Level-2” on page 3-19

About the Maintenance of Level-1 MATLAB
S-Functions

Note The information provided in this section is intended only for use in
maintaining existing Level-1 MATLAB S-functions. Use the more capable
Level-2 API to develop new MATLAB S-functions (see “Writing Level-2
MATLAB S-Functions” on page 3-4). Level-1 MATLAB S-functions support a
much smaller subset of the S-function API then Level-2 MATLAB S-functions,
and their features are limited compared to built-in blocks.

A Level-1 MATLAB S-function is a MATLAB function of the following form
[sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...)

where f is the name of the S-function. During simulation of a model, the
Simulink engine repeatedly invokes f, using the flag argument to indicate
the task (or tasks) to be performed for a particular invocation. The S-function
performs the task and returns the results in an output vector.

A template implementation of a Level-1 MATLAB S-function, sfuntmpl.m,
resides in matlabroot/toolbox/simulink/blocks. The template consists
of a top-level function and a set of skeleton subfunctions, called S-function
callback methods, each of which corresponds to a particular value of flag. The

3-15

3 Writing S-Functions in MATLAB

top-level function invokes the subfunction indicated by flag. The subfunctions
perform the actual tasks required of the S-function during simulation.

Level-1 MATLAB S-Function Arguments
The Simulink engine passes the following arguments to a Level-1 MATLAB

S-function:

Current time

State vector

Input vector

flag

the S-function

Integer value that indicates the task to be performed by

The following table describes the values that flag can assume and lists the
corresponding Level-2 MATLAB S-function method for each value.

Flag Argument

Level-1
Flag

Level-2 Callback Method

Description

0

setup

Defines basic S-Function
block characteristics,
including sample times,
initial conditions of
continuous and discrete
states, and the sizes array
(see “Defining S-Function
Block Characteristics” on
page 3-18 for a description
of the sizes array).

mdlDerivatives

Calculates the derivatives
of the continuous state
variables.

3-16

Maintaining Level-1 MATLAB S-Functions

Flag Argument (Continued)

Level-1

Flag Level-2 Callback Method Description

2 mdlUpdate Updates discrete states,

sample times, and major
time step requirements.

3 md1lOutputs Calculates the outputs of

the S-function.

4 md1lOutputs method updates the | Calculates the time of the
run-time object NextTimeHit next hit in absolute time.
property This routine is used only

when you specify a variable
discrete-time sample time
in the setup method.

9 mdlTerminate Performs any necessary

end-of-simulation tasks.

Level-1 MATLAB S-Function Outputs

A Level-1 MATLAB S-function returns an output vector containing the
following elements:

® sys, a generic return argument. The values returned depend on the flag
value. For example, for flag = 3, sys contains the S-function outputs.

® x0, the initial state values (an empty vector if there are no states in the
system). x0 is ignored, except when flag

0.

® str, reserved for future use. Level-1 MATLAB S-functions must set this to
the empty matrix, [].

® ts, a two-column matrix containing the sample times and offsets of the
block (see “How to Specify the Sample Time” in Using Simulink for
information on how to specify a sample times and offsets).

For example, if you want your S-function to run at every time step
(continuous sample time), set ts to [0 0]. If you want your S-function
to run at the same rate as the block to which it is connected (inherited

3-17

3 Writing S-Functions in MATLAB

3-18

sample time), set ts to [-1 0]. If you want it to run every 0.25 seconds
(discrete sample time) starting at 0.1 seconds after the simulation start
time, set ts to [0.25 0.1].

You can create S-functions that do multiple tasks, each at a different
sample rate (i.e., a multirate S-function). In this case, ts should specify
all the sample rates used by your S-function in ascending order by sample
time. For example, suppose your S-function performs one task every 0.25
second starting from the simulation start time and another task every 1
second starting 0.1 second after the simulation start time. In this case,
your S-function should set ts equal to [.25 0; 1.0 .1]. This will cause
the Simulink engine to execute the S-function at the following times: [0
0.1 0.25 0.5 0.75 1 1.1 ...]. Your S-function must decide at every
sample time which task to perform at that sample time.

You can also create an S-function that performs some tasks continuously
(i.e., at every time step) and others at discrete intervals.

Defining S-Function Block Characteristics

For the Simulink engine to recognize a Level-1 MATLAB S-function, you must
provide it with specific information about the S-function. This information
includes the number of inputs, outputs, states, and other block characteristics.

To provide this information, call the simsizes function at the beginning of
the S-function.

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the
sizes structure with information about the S-function. The table below lists
the fields of the sizes structure and describes the information contained

in each field.

Fields in the sizes Structure

Field Name Description
sizes.NumContStates Number of continuous states
sizes.NumDiscStates Number of discrete states
sizes.NumOutputs Number of outputs

Maintaining Level-1 MATLAB S-Functions

Fields in the sizes Structure (Continued)

Field Name Description
sizes.NumInputs Number of inputs
sizes.DirFeedthrough Flag for direct feedthrough
sizes.NumSampleTimes Number of sample times

After you initialize the sizes structure, call simsizes again:
Sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds
the information for use by the Simulink engine.

Processing S-Function Parameters

When invoking a Level-1 MATLAB S-function, the Simulink engine always
passes the standard block parameters, t, x, u, and flag, to the S-function as
function arguments. The engine can pass additional block-specific parameters
specified by the user to the S-function. The user specifies the parameters

in the S-function parameters field of the S-Function Block Parameters
dialog box (see “Passing Parameters to S-Functions” on page 1-5). If the block
dialog specifies additional parameters, the engine passes the parameters to
the S-function as additional function arguments. The additional arguments
follow the standard arguments in the S-function argument list in the order
in which the corresponding parameters appear in the block dialog. You can
use this block-specific S-function parameter capability to allow the same
S-function to implement various processing options. See the limintm.m
example in the matlabroot/toolbox/simulink/blocks folder for an example
of an S-function that uses block-specific parameters.

Converting Level-1 MATLAB S-Functions to Level-2

You can convert Level-1 MATLAB S-functions to Level-2 MATLAB S-functions
by mapping the code associated with each Level-1 S-function flag to the
appropriate Level-2 S-function callback method. See the Flag Arguments
table for a mapping of Level-1 flags to Level-2 callback methods. In addition:

3-19

3 Writing S-Functions in MATLAB

e Store discrete state information for Level-2 MATLAB S-functions in DWork
vectors, initialized in the PostPropagationSetup method.

® Access Level-2 MATLAB S-function dialog parameters using the DialogPrm
run-time object property, instead of passing them into the S-function as
function arguments.

e For S-functions with variable sample times, update the NextTimeHit
run-time object property in the Outputs method to set the next sample time
hit for the Level-2 MATLAB S-function.

For example, the following table shows how to convert the Level-1 MATLAB
S-function sfundsc2.m to a Level-2 MATLAB S-function. The example uses
the Level-2 MATLAB S-function template msfuntmpl basic.m as a starting
point when converting the Level-1 MATLAB S-function. The line numbers in
the table corresponds to the lines of code in sfundsc2.m.

Line Code in sfundsc2.m Code in Level-2 MATLAB file
Number (sfundsc2_level2.m)
1
function [sys,x0,str,ts]= ... function sfundsc2(block)
sfundsc2(t,x,u,flag) setup(block);

The syntax for the function line changes to
accept one input argument block, which is the
Level-2 MATLAB S-Function block’s run-time
object. The main body of the Level-2 MATLAB
S-function contains a single line that calls the
local setup function.

13-19
switch flag, function setup(block)
case 0, The flag value of zero corresponds to calling the
[sys,x0,str,ts] = ... setup method. A Level-2 MATLAB S-function
mdlInitializeSizes; does not use a switch statement to invoke the

callback methods. Instead, the local setup
function registers callback methods that are
directly called during simulation.

3-20

Maintaining Level-1 MATLAB S-Functions

Line Code in sfundsc2.m Code in Level-2 MATLAB file

Number (sfundsc2_level2.m)

24 - 31 The setup function registers two local functions
case 2, associated with flag values of 2 and 3.

sys = mdlUpdate(t,x,u);
block.RegBlockMethod('Outputs' ,@Output);
case 3, block.RegBlockMethod('Update' ,@Update);
sys = mdlOutputs(t,x,u);

53 - 66 The setup function also initializes the attributes
sizes = simsizes; of the Level-2 MATLAB S-function:
sizes.NumContStates = 0; block.NumInputPorts = 1;
sizes.NumDiscStates = 1; block.NumOutputPorts = 1;
sizes.NumOutputs =1; block.InputPort(1).Dimensions =1;
sizes.NumInputs =1; block.InputPort(1).DirectFeedthrough = false;
sizes.DirFeedthrough = 0; block.OutputPort(1).Dimensions =13
sizes.NumSampleTimes = 1; block.NumDialogPrms = 0;

block.SampleTimes = [0.1 0];
sys = simsizes(sizes);
Because this S-function has discrete
x0 = 0; states, the setup method registers the
str = [1; PostPropagationSetup callback method
ts = 1[.10]; to initialize a DWork vector and the

InitializeConditions callback method to set
the initial state value.

block.RegBlockMethod('PostPropagationSetup’,...
@DoPostPropSetup) ;
block.RegBlockMethod('InitializeConditions',
@InitConditions);

3-21

3 Writing S-Functions in MATLAB

Line Code in sfundsc2.m Code in Level-2 MATLAB file
Number (sfundsc2_level2.m)
56 The PostPropagationSetup method initializes
sizes.NumDiscStates = 1; the DWork vector that stores the single discrete
state.

function DoPostPropSetup(block)

%% Setup Dwork
block.NumDworks = 1;
block.Dwork(1).Name = 'x0';

block.Dwork(1).Dimensions =1;
block.Dwork(1).DatatypelID = 0;
block.Dwork(1).Complexity = 'Real’;

block.Dwork(1).UsedAsDiscState = true;

64 The InitializeConditions method initializes
x0 = 0 the discrete state value.

function InitConditions(block)

%% Initialize Dwork
block.Dwork(1).Data = 0

77 - 78 The Update method calculates the next value of
function sys = ... the discrete state.

mdlUpdate(t,x,u)
function Update(block)

Sys = u; block.Dwork(1).Data = block.InputPort(1).Data;
88 - 89 The Outputs method calculates the S-function’s
function sys = ... output.
md1lOutputs(t,x,u)
Sys = X; function Output(block)

block.OutputPort(1).Data = block.Dwork(1).Data;

3-22

Writing S-Functions in C

¢ “Introduction” on page 4-2

¢ “Building S-Functions Automatically” on page 4-5

¢ “S-Function Builder Dialog Box” on page 4-12

¢ “Example of a Basic C MEX S-Function” on page 4-43
¢ “Templates for C S-Functions” on page 4-50

® “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” on page 4-55

¢ “How the Simulink Engine Interacts with C S-Functions” on page 4-77
* “Writing Callback Methods” on page 4-90

e “Using S-Functions in Normal Mode Referenced Models” on page 4-91
® “Debugging C MEX S-Functions” on page 4-93

¢ “Converting Level-1 C MEX S-Functions to Level-2” on page 4-101

4 Writing S-Functions in C

Introduction

In this section...

“About Writing C S-Functions” on page 4-2
“Creating C MEX S-Functions” on page 4-3

About Writing C S-Functions

A C MEX S-function must provide information about the function to the
Simulink engine during the simulation. As the simulation proceeds, the
engine, the ODE solver, and the C MEX S-function interact to perform
specific tasks. These tasks include defining initial conditions and block
characteristics, and computing derivatives, discrete states, and outputs.

As with MATLAB S-functions, the Simulink engine interacts with a C MEX
S-function by invoking callback methods that the S-function implements.
Each method performs a predefined task, such as computing block outputs,
required to simulate the block whose functionality the S-function defines.
However, the S-function is free to perform the task in each method according
to the functionality the S-function implements. For example, the md10utputs
method must compute the block outputs at the current simulation time.
However, the S-function can calculate these outputs in any way that is
appropriate for the function. This callback-based API allows you to create
S-functions, and hence custom blocks, of any desired functionality.

The set of callback methods that C MEX S-functions can implement is larger
than that available for MATLAB S-functions. See Chapter 9, “S-Function
Callback Methods — Alphabetical List” for descriptions of the callback
methods that a C MEX S-function can implement. C MEX S-functions are
required to implement only a small subset of the callback methods in the
S-function API. If your block does not implement a particular feature, such as
matrix signals, you are free to omit the callback methods needed to implement
a feature. This allows you to create simple blocks very quickly.

The general format of a C MEX S-function is shown below:

#define S_FUNCTION_NAME your_sfunction_name_here
#define S_FUNCTION_LEVEL 2

Introduction

#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

{
}

<additional S-function routines/code>

static void mdlTerminate (SimStruct *S)

{

}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a

MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */
f#else
#include "cg_sfun.h" /* Code generation registration

function */
#endif

mdlInitializeSizes is the first routine the Simulink engine calls when
interacting with the S-function. The engine subsequently invokes other
S-function methods (all starting with mdl). At the end of a simulation, the
engine calls md1Terminate.

Creating C MEX S-Functions

You can create C MEX S-functions using any of the following approaches:

e Handwritten S-function — You can write a C MEX S-function from
scratch. (“Example of a Basic C MEX S-Function” on page 4-43 provides a
step-by-step example.) See “Templates for C S-Functions” on page 4-50 for
a complete skeleton implementation of a C MEX S-function that you can
use as a starting point for creating your own S-functions.

¢ S-Function Builder — This block builds a C MEX S-function from
specifications and code fragments that you supply using a graphical user
interface. This eliminates the need for you to write S-functions from
scratch. See “Building S-Functions Automatically” on page 4-5 for more
information about the S-Function Builder.

4-3

4 Writing S-Functions in C

4-4

e Legacy Code Tool — This utility builds a C MEX S-function from existing
C code and specifications that you supply using MATLAB code. See
“Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” on page 4-55 for more information about integrating legacy C
code into Simulink models.

Each of these approaches involves a tradeoff between the ease of writing

an S-function and the features supported by the S-function. Although
handwritten S-functions support the widest range of features, they can be
difficult to write. The S-Function Builder block simplifies the task of writing C
MEX S-functions but supports fewer features. The Legacy Code Tool provides
the easiest approach to creating C MEX S-functions from existing C code

but supports the fewest features. See Chapter 2, “Selecting an S-Function
Implementation” for more information on the features and limitations of each
of these approaches to writing a C MEX S-function.

In addition to these three approaches, the Real-Time Workshop product
provides a method for generating a C MEX S-function from a graphical
subsystem. If you are new to writing C MEX S-functions, you can build
portions of your application in a Simulink subsystem and use the S-function
target to convert it to an S-function. The generated files provides insight on
how particular blocks can be implemented within an S-function. See “Creating
Component Object Libraries and Enhancing Simulation Performance” in

the Real-Time Workshop User’s Guide for details and limitations on using
the S-function target.

Building S-Functions Automatically

Building S-Functions Automatically

In this section...

“About Building S-Functions Automatically” on page 4-5
“Deploying the Generated S-Function” on page 4-10

“How the S-Function Builder Builds an S-Function” on page 4-11

About Building S-Functions Automatically

The S-Function Builder is a Simulink block that builds an S-function from
specifications and C code that you supply. The S-Function Builder also serves
as a wrapper for the generated S-function in models that use the S-function.
This section explains how to use the S-Function Builder to build simple C
MEX S-functions.

Note For examples of using the S-Function Builder to build S-functions, see
the C file S-functions subsystem of the S-function demos provided with the
Simulink product. To display the demos, enter sfundemos at the MATLAB
command line (see “S-Function Examples” on page 1-20 for more information).

To build an S-function with the S-Function Builder:

1 Set the MATLAB current folder to the folder in which you want to create
the S-function.

Note This folder must be on the MATLAB path.

2 If you wish to connect a bus signal to the Input or Output port of the
S-Function Builder, you must first create a bus object. You perform this
task interactively using the Simulink Bus Editor. (For more information,
see “Using the Bus Editor”. Alternatively, you can use Simulink.Bus as
follows.

a At the MATLAB command line, enter:

4-5

4 Writing S-Functions in C

a = Simulink.Bus

As a result, the HeaderFile for the bus defaults to the empty string:
a =

Simulink.Bus
Description: ''
HeaderFile: "'
Elements: [0x1 double]

b If you wish to specify the header file for the bus, then at the MATLAB
command line:

a.Headerfile = 'Busdef.h'

If you do not specify a header file, Simulink automatically generates
Sfunctionname_bus.h

4-6

Building S-Functions Automatically

Create Bus Objects Using the
Bus Editor or Simulink.Bus
(a =Simulink.Bus)

l

¥ ¥
Define Header File
foreach Bus
(a.Headerfile = ‘Busdef.h")

Use Default Empty Header
(a.Headerfile="")

h h
Use Busesin Use Busesin
S5-Function Builder 5-Function Builder

| l

S-Function Builder]]
Generates a Header File S-Function Builder Uses

(Sfunctionname_bus.h) Busdef.h

For a demonstration on how to use the S-Function Builder with a bus, see
the S-Function Builder with buses example by entering the following
command at the MATLAB command line:

open_system([matlabroot, '/toolbox/simulink/simdemos/simfeatures/...
sfbuilder_bususage.mdl']);

3 Create a new Simulink model.

4 Copy an instance of the S-Function Builder block from the User-Defined
Functions library in the Library Browser into the new model.

4-7

4 Writing S-Functions in C

4-8

S untitled * M=l B

Eile Edit Mew Simulation Format Tools Help

DEE&E e Q2 hEL &€ > =

L i)
S-Punction Euilder

Re [1005% | [loded5 y

5 Double-click the block to open the S-Function Builder dialog box (see
“S-Function Builder Dialog Box” on page 4-12).

Building S-Functions Automatically

-Function Builder: untitled;S-Function Builder

: T o [=] 3]
rParameters

S-function name: || Build |

S-function parameter

Marme Diata type Salue |
X
rPartiParameter Initialization | Data Properties | Libraries | Outputs | Cortinuous Derivatives | Discrete Update | Build infa
E-l InputDPorts rDescription
ul
E_l Outeut Ports The S-Function Builder block crestes a wrapper C-S-function with multiple input ports, multiple output pors
FJD ahd variahble number of scalar, vector or matrix parameters. The inputs and output ports can propagate Simulink
P ¥ ot buitt-in data types, complex, frame, 1-0 and 2-0 signals. You can use this block to erter your ovwn code or import
ararneters

legacy C code. This block also supports discrete and continuous states. The stetes must be of type resl. Cptionally
the S-Function Builder block will generste & TLC file to be used with Real Times Workshop for code generstiot.

r=-function setting

Murrber of discrete states:

Ig— Satnple mode: Im
Discrete states IC: Ig— Sarnple time value: I—

ID

ID

Murmber of continuous states:

Continuoug states IC:

Cancel | Help |

6 Use the specification and code entry panes on the S-Function Builder dialog
box to enter information and custom source code required to tailor the

generated S-function to your application (see “S-Function Builder Dialog
Box” on page 4-12).

7 If you have not already done so, configure the mex command to work on
your system.

4 Writing S-Functions in C

4-10

To configure the mex command, type mex -setup atthe MATLAB command
prompt.

8 Click Build on the S-Function Builder to start the build process.

The S-Function Builder builds a MEX file that implements the specified
S-function and saves the file in the current folder (see “How the S-Function
Builder Builds an S-Function” on page 4-11).

9 Save the model containing the S-Function Builder block.

Deploying the Generated S-Function

To use the generated S-function in another model, first check to ensure that
the folder containing the generated S-function is on the MATLAB path.
Then copy the S-Function Builder block from the model used to create the
S-function into the target model and set its parameters, if necessary, to the
values required by the target model.

Alternatively, you can deploy the generated S-function without using the
S-Function Builder block or exposing the underlying C source file. To do this:

1 Open the Simulink model that will include the S-function.

2 Copy an S-Function block from the User-Defined Functions library in the
Library Browser into the model.

3 Double-click on the S-Function block.

4 In the Block Parameters dialog box that opens, enter the name of the
executable file generated by the S-Function Builder into the S-function

name edit field.

5 Enter any parameters needed by the S-function into the S-function
parameters edit field. Enter the parameters in the order they appear in
the S-Function Builder dialog box.

6 Click OK on the S-Function Block Parameters dialog box.

You can use the generated executable file, for example, the .mexw32 file, in
any S-Function block in any model as long as the executable file is on the

MATLAB path.

Building S-Functions Automatically

How the S-Function Builder Builds an S-Function

The S-Function Builder builds an S-function as follows. First, it generates the
following source files in the current folder:

sfun.c

where sfun is the name of the S-function that you specify in the S-function
name field of the S-Function Builder dialog box. This file contains the

C source code representation of the standard portions of the generated
S-function.

sfun_wrapper.c

This file contains the custom code that you entered in the S-Function
Builder dialog box.

sfun.tlc

This file permits the generated S-function to run in Simulink Rapid
Accelerator mode and allows for inlining the S-function during code
generation. In addition, this file generates code for the S-function in
Accelerator mode, thus allowing the model to run faster.

sfun_bus.h

If you specify any Input port or Output port as a bus in the Data
Properties pane of the S-Function Builder dialog box, but do not specify
a header file, then the S-Function Builder automatically generates this
header file.

After generating the S-function source code, the S-Function Builder uses the
mex command to build the MEX file representation of the S-function from the
generated source code and any external custom source code and libraries
that you specified.

4-11

4 Writing S-Functions in C

S-Function Builder Dialog Box

In this section...

“About S-Function Builder” on page 4-12
“Parameters/S-Function Name Pane” on page 4-14
“Port/Parameter Pane” on page 4-15
“Initialization Pane” on page 4-16

“Data Properties Pane” on page 4-18

“Input Ports Pane” on page 4-19

“Output Ports Pane” on page 4-21
“Parameters Pane” on page 4-22

“Data Type Attributes Pane” on page 4-23
“Libraries Pane” on page 4-24

“Outputs Pane” on page 4-27

“Continuous Derivatives Pane” on page 4-31
“Discrete Update Pane” on page 4-33

“Build Info Pane” on page 4-34

“Example: Modeling a Two-Input/Two-Output System” on page 4-37

About S-Function Builder

The S-Function Builder dialog box enables you to specify the attributes of an
S-function to be built by an S-Function Builder block. To display the dialog
box, double-click the S-Function Builder block icon or select the block and
then select Open Block from the Edit menu on the model editor or the
block’s context menu. The dialog box appears.

4-12

S-Function Builder Dialog Box

S-Function Builder: untitled/S-Function Builder i [m] B3]

rParameters

S-function name: || Build |

S-function parameter

Marme Diata type Salue |

X
rPartiParameter Initialization | Data Properties | Libraries | Outputs | Cortinuous Derivatives | Discrete Update | Build infa

E-l InputDPorts rDescription

ul
E_l Outeut Ports The S-Function Builder block crestes a wrapper C-S-function with multiple input ports, multiple output pors

FJD ahd variahble number of scalar, vector or matrix parameters. The inputs and output ports can propagate Simulink

P ¥ ot buitt-in data types, complex, frame, 1-0 and 2-0 signals. You can use this block to erter your ovwn code or import
ararneters

legacy C code. This block also supports discrete and continuous states. The stetes must be of type resl. Cptionally
the S-Function Builder block will generste & TLC file to be used with Real Times Workshop for code generstiot.

r=-function setting

Murrber of discrete states:

Ig— Satnple mode: Im
Discrete states IC: Ig— Sarnple time value: I—

ID

ID

Murmber of continuous states:

Continuoug states IC:

Cancel | Help |

The dialog box contains controls that let you enter information needed for the
S-Function Builder block to build an S-function to your specifications. The
controls are grouped into panes. See the following sections for information
on the panes and the controls that they contain.

4-13

4 Writing S-Functions in C

Note The following sections use the term target S-function to refer to the
S-function specified by the S-Function Builder dialog box.

See “Example: Modeling a Two-Input/Two-Output System” on page 4-37
for an example showing how to use the S-Function Builder to model a
two-input/two-output discrete state-space system.

Parameters/S-Function Name Pane
This pane displays the target S-function name and parameters.

rParameter

S-functioh natme: || Build |

rs-function parameter

Matre Diata type “alle

a double 1
1} dlouble 1

The pane contains the following controls.

S-function name
Specifies the name of the target S-function.

S-function parameters

This table displays the parameters of the target S-function. Each row of the
table corresponds to a parameter, and each column displays a property of the
parameter as follows:

¢ Name — Name of the parameter. Define and modify this property from the
“Parameters Pane” on page 4-22.

¢ Data type — Lists the data type of the parameter. Define and modify this
property from the “Parameters Pane” on page 4-22.

4-14

S-Function Builder Dialog Box

® Value — Specifies the value of the parameter. Enter a valid MATLAB
expression in this field.

Build/Save

Use this button to generate the C source code and executable MEX file from
the information you entered in the S-Function Builder. If the button is labeled
Build, the S-Function Builder generates the source code and executable
MEX file. If the button is labeled Save, it generates only the C source code.
Use the Save code only check box on the Build Info pane to toggle the
functionality of this button.

Hide/Show S-function editing tabs

Use the small button at the bottom-right of the Parameters/S-Function
Name pane, to collapse and expand the bottom portion of the S-Function
Builder dialog box.

Port/Parameter Pane

This pane displays the ports and parameters that the dialog box specifies for
the target S-function.

rPort/Parameter

ﬁ It Parts
I_O ua
= Cutput Ports
v
Paratneters

The pane contains a tree control whose top nodes correspond to the target
S-function input ports, output ports, and parameters, respectively. Expanding
the Input Ports, Output Ports, or Parameter node displays the input ports,

4-15

4 Writing S-Functions in C

4-16

output ports, or parameters, respectively, specified for the target S-function.
Selecting any of the port or parameter nodes selects the corresponding entry
on the corresponding port or parameter specification pane.

Initialization Pane

The Initialization pane allows you to specify basic features of the S-function,
such as the width of its input and output ports and its sample time.

Initislization | Data Properties | Libraries | Outputs | Cortinuous Derivatives | Discrete Update | Build Info |

The =-Function Builder block crestes a wwrapper C-S-function wyith multiple input potts, muttiple output podts

and wariable number of scalar, vector or matrix parameters. The inputs and output ports can propagate Simulink
buitt-in data types, complex, frame, 1-D and 2-D sighals. You can use this block to enter your owwen code ar import
legacy © code. This block alzo supports dizcrete and continuous states. The states must be of type real. Optionally
the S-Function Builder block will generate a TLC file to be uzed with Real Time Workshop far code generation.

re=-function zettings

Mumber of discrete states: 0
Dizcrete states IC:

Mumber of continuous states: |

Continuous states IC:

Sarmple mocde: Inherted T

I

The S-Function Builder uses the information that you enter on this pane to
generate the mdlInitializeSizes callback method. The Simulink engine
invokes this method during the model initialization phase of the simulation
to obtain basic information about the S-function. (See “How the Simulink
Engine Interacts with C S-Functions” on page 4-77 for more information on
the model initialization phase.)

The Initialization pane contains the following fields.

Number of discrete states
Number of discrete states in the S-function.

S-Function Builder Dialog Box

Discrete states IC

Initial conditions of the discrete states in the S-function. You can enter the
values as a comma-separated list or as a vector (e.g., [0 1 2]). The number of
initial conditions must equal the number of discrete states.

Number of continuous states
Number of continuous states in the S-function.

Continuous states IC

Initial conditions of the continuous states in the S-function. You can enter the
values as a comma-separated list or as a vector (e.g., [0 1 2]). The number of
initial conditions must equal the number of continuous states.

Sample mode
Sample mode of the S-function. The sample mode determines the length of

the interval between the times when the S-function updates its output. You
can select one of the following options:

® Inherited

The S-function inherits its sample time from the block connected to its
input port.

® Continuous
The block updates its outputs at each simulation step.
e Discrete

The S-function updates its outputs at the rate specified in the Sample
time value field of the S-Function Builder dialog box.

Sample time value

Scalar value indicating the interval between updates of the S-function outputs.
This field is enabled only if you select Discrete as the Sample mode.

4-17

4 Writing S-Functions in C

4-18

Note The S-Function Builder does not currently support multiple-block
sample times or a nonzero offset time.

Data Properties Pane

The Data Properties pane allows you to add ports and parameters to your
S-function.

Initialization Data Properties | Librariesl Outputsl Continuous Deri\rati\resl Discrete Updatel Build Infol

rDescription

Use the Add and Delete buttons to addjremove ports and parameters to the S-function. Use the table below ta
configure the data type, dimensions, complexity and frameness of each S-function port and to configure the data
type and complexity of each parameter,

rPort and Parameter properties

Input parts I Output ports | Parameters | Data type attributes |

Fort name

uld

1-D

ul

1-D

Dimensions Rows Columns Compl